
Post-Link Optimization for Linux on POWER

1 of 18

NAME
SYNOPSIS
DESCRIPTION
Input files
Instrumentation and Profiling
Optimizations
Options
Profiling SPE executable files
Processing PPE/SPE executable files

Integrated mode
Standalone mode

ASCII profile
Human-readable output
Importing code from shared libraries
FILES

NAME

Post-link Optimization for Linux on POWER

SYNOPSIS

fdprpro -a action [fdprpro-options] program

DESCRIPTION

The Post-link Optimization for Linux on POWER is a performance-tuning utility for

reducing the execution time and the real memory utilization of user-level application

programs. The tool optimizes the executable image of a program by collecting information on

the program's behavior under a typical workload, and creating a new version of the program

that is optimized for that workload. The new program generated by the post-link optimizer

typically runs faster and uses less real memory than the original program.

Note: The post-link optimizer applies advanced optimization techniques to a program. Some

aggressive optimizations may result in programs that do not behave as expected. It is

recommended to test the optimized program at least with the same test suite used to test the

original program. The optimized program is not supported as input to the optimizer.

The post-link optimizer builds an optimized executable program in three distinct phases:

Post-Link Optimization for Linux on POWER

2 of 18

Instrumentation:

Creates an instrumented executable program and an empty template profile file. You
do that by running fdprpro with the instrumentation action:

 $ fdprpro -a instr ... myprog

This creates an instrumented file, myprog.instr by default, and a profile file,
myprog.nprof by default.

Training:

Runs the instrumented program and updates the profile data.

Optimization:

Generates the optimized executable program file, given optimization options. You do
that by running fdprpro with the optimization action, specifying the same input
program, the profile file, plus the desired optimization flags:

 $ fdprpro -a opt -f myprog.nprof [opts ...] myprog

This creates the optimized file for myprog, myprog.fdpr by default.

Note: The instrumented executable, created in the instrumentation phase and run in the

training phase, typically runs several times slower than the original program. Due to the

increased execution time required by the instrumented program, the executable should be

invoked in such a way as to minimize execution duration, while still fully exercising the

desired code areas.

Input files

The input file to fdprpro should be an ELF executable or shared library (.so file). Both

ELF32 and ELF64 are supported.

Important: The executable program should be built with relocation information. Currently,

fdprpro supports only the GCC compiler and the GNU linker. To leave the relocation

information in the executable file, use the linker with the --emit-relocs (or -q) option. This

can be specified in the GCC command by -Wl,-q.

Instrumentation and Profiling

Along with the instrumented file, fdprpro creates the profile file. The file is then filled with

profile information (i.e., counts at various points in the program), while the instrumented

program runs with its specified workload.

Post-Link Optimization for Linux on POWER

3 of 18

Important: The instrumented program requires a shared library called libfdprinst32.so (or

libfdprinst64.so for ELF64 programs). Make sure the environment variable

LD_LIBRARY_PATH is set to the directory containing these libraries.

Note: The instrumented program expects the profile file to be in the same directory as the

instrumented program. To override this, set FDPR_PROF_DIR to the desired directory.

Optimizations

With the basic optimization flag, -O, fdprpro performs code reordering optimization

together with the optimizations of branch prediction, branch folding, code alignment and

removal of redundant NOOP instructions.

Higher level of optimizatons (-O2, -O3, and -O4) provide increasingly aggressive function

inlining, DFA (data flow analysis) related optimizations, data reordering, and code

restructuring (like loop-unrolling). While these optimization flags works well for most

applications, optimal performance is typically achieved by carefull selection of specific

optimizations for the given user's program.

Options

fdprpro accepts a host of optimization-specific options. In addition, there are a few options

that create auxiliary files for debugging purposes (e.g., code disassembly).

Analysis Options:

-[no]aawc, --[no]analyze-assembly-written-csects

Analyze objects written in Assembly. (When this option is used it must be specified at

both the instrumentation and optimization phases).

-acf analysis-configuration-file, --analysis-configuration-file analysis-configuration-file

Provide a configuration file of analysis information (advanced option).

-ifl file, --ignored-function-list file

Set the ignored function list. The file contains names of functions that should not be

instrumentated or optimized.

Post-Link Optimization for Linux on POWER

4 of 18

Instrumentation Options:

-fd Fdesc, --file-descriptor Fdesc

Set the file descriptor number to be used when opening the profile file. The default of

Fdesc is set to the maximum-allowed number of open files.

-[no]ri, --[no]register-instrumentation

Instrument the input program file to collect profile information about indirect branches

via registers. The default is set to collect the profile information.

-[no]sfp, --[no]save-floating-point-registers

Save floating point registers in instrumented code. The default is set to save floating

point registers.

-spescr 0-127, --spe-scratch-register 0-127

Specify a global SPE scratch register, decreasing instrumenation overhead, in order to

minimize possibility of local store overflow.

Profile Files Options:

-af prof_file, --ascii-profile-file prof_file

Set the name of an ASCII profile file containing profile information. There are three

different XML entry options: Simple-..-, Cond-..- and Reg-..- for profiling data on

regular, conditional or branch via register instructions, respectively.

-aop, --accept-old-profile

Accept the old profile file collected on previous versions of the input program file

(requires the -f flag).

-f prof_file, --profile-file prof_file

Set the profile file name. The profile file is created during the instrumentation phase

and read during the optimization phase. The profile file is updated each time when you

run the instrumented program.

Optimization Options:

-A alignment, --align-code alignment

Align program so that hot code will be aligned on alignment-byte addresses.

Post-Link Optimization for Linux on POWER

5 of 18

-abb factor, --align-basic-blocks factor

Align basic blocks that are hotter then the average by given (float) factor. This is a

lower-level machine-specific alignment compared to --align-code. Value of -1 (the

default) disables this option.

-bf, --branch-folding

Eliminate branch to branch instructions.

-bh factor, --branch-hint factor

add branch hints to basic blocks that are hotter then the average by given (float) factor.

This is a SPE specific optimization. Value of -1 (the default) disables this option.

-bp, --branch-prediction

Set branch prediction bit for conditional branches according to collected profile.

-dce, --dead-code-elimination

Eliminate instructions related to unused local variables within frequently executed

functions. This is useful mainly after applying function inlining optimization.

-dp, --data-prefetch

Insert data-cache prefetch instructions to improve data-cache performance.

-ece, --epilog-code-eliminate

Reduce code size by grouping common instructions in function epilogs, into a single

unified code.

-hr, --hco-reschedule

Relocate instructions from frequently executed code to rarely executed code areas,

when possible.

-hrf factor, --hco-resched-factor factor

Set the aggressiveness of the -hr optimization option according to a factor value

between (0,1), where 0 is the least aggressive factor (applicable only with the -hr

option).

Post-Link Optimization for Linux on POWER

6 of 18

-i, --inline

Same as --selective-inline with --inline-small-funcs 12.

-ihf pct, --inline-hot-functions pct

Inline all function call sites to functions that have a frequency count greater than the

given pct frequency percentage.

-isf size, --inline-small-funcs size

Inline all functions that are smaller or equal to the given size in bytes.

-kr, --killed-registers

Eliminate stores and restores of registers that are killed (overwritten) after frequently

executed function calls.

-lap, --load-address-propagation

Eliminate load instructions of variables' addresses by re-using pre-loaded addresses of

adjacent variables.

-las, --load-after-store

Add NOP instructions to place each load instruction further apart following a store

instruction that reference the same memory address.

-lro, --link-register-optimization

Eliminate saves and restores of the link register in frequently-executed functions.

-lu aggressiveness_factor, --loop-unroll aggressiveness_factor

Unroll short loops containing of one to several basic blocks according to an

aggressiveness factor between (1,9), where 1 is the least aggressive unrolling option

for very hot and short loops.

-lun unrolling_number, --loop-unrolling-number unrolling_number

Set the number of unrolled iterations in each unrolled loop. The allowed range is

between (2,50). Default is set to 2. (applicable only with the -lu flag).

-nop, --nop-removal

Post-Link Optimization for Linux on POWER

7 of 18

Remove NOP instructions from reordered code.

-O

Switch on basic optimizations only. Same as -RC -nop -bp -bf.

-O2

Switch on less aggressive optimization flags. Same as -O -hr -pto -isf 8 -tlo -kr.

-O3

Switch on aggressive optimization flags. Same as -O2 -RD -isf 12 -si -dp -lro -las

-vro -btcar -lu 9 -rt 0.

-O4

Switch on aggressive optimization flags together with aggressive function inlining.

Same as -O3 -sidf 50 -ihf 20 -sdp 9 -shci 90 and -bldcg (for XCOFF files).

-pbsi, --path-based-selective-inline

Perform selective inlining of dominant hot function calls based on control flow paths

leading to hot functions.

-pca, --propagate-constant-area

Relocate the constant variables area to the top of the code section when possible.

-[no]pr, --[no]ptrgl-r11

Perform removal of R11 load instruction in _ptrgl csect.

-pto, --ptrgl-optimization

Perform optimization of indirect call instructions via registers by replacing them with

conditional direct jumps.

-ptosl limit_size, --ptrgl-optimization-size-limit limit_size

Set the limit of the number of conditional statements generated by -pto optimization.

Allowed values are between 1..100. Default value set to 3. (applicable only with the

-pto flag).

-ptoht heatness_threshold, --ptrgl-optimization-heatness-threshold heatness_threshold

Post-Link Optimization for Linux on POWER

8 of 18

Set the frequency threshold for indirect calls that are to be optimized by -pto

optimization. Allowed range between 0..1. Default is set to 0.8. (applicable only with

-pto flag).

-RC, --reorder-code

Perform code reordering.

-rcaf aggressiveness_factor, --reorder-code-aggressivenes-factor aggressiveness_factor

Set the aggressiveness of code reordering optimization. Allowed values are [0 | 1 | 2],

where 0 preserves original code order and 2 is the most aggressive. Default is set to 1.

(applicable only with the -RC flag).

-rcctf termination_factor, --reorder-code-chain-termination-factor termination_factor

Set the threshold fraction which determines when to terminate each chain of basic

blocks during code reordering. Allowed input range is between 0.0 to 1.0 where 0.0

generates long chains and 1.0 creates single basic block chains. Default is set to 0.05.

(applicable only with the -RC flag).

-rccrf reversal_factor, --reorder-code-condition-reversal-factor reversal_factor

Set the threshold fraction which determines when to enable condition reversal for each

conditional branch during code reordering. Allowed input range is between 0.0 to 1.0

when 0.0 tries to preserve original condition direction and 1.0 ignores it. Default is set

to 0.8 (applicable only with the -RC flag).

-RD, --reorder-data

Perform static data reordering.

-rmte, --remove-multiple-toc-entries

Remove multiple TOC entries pointing to the same location in the input program file.

-rt removal_factor, --reduce-toc removal_factor

Perform removal of TOC entries according to a removal factor between (0,1), where 0

removes non-accessed TOC entries only, and 1 removes all possible TOC entries.

-sdp aggressiveness_factor, --stride-data-prefetch aggressiveness_factor

Perform data prefetching within frequently executed loops based on stride analysis,

Post-Link Optimization for Linux on POWER

9 of 18

according to an aggressiveness factor between (1,9), where 1 is least aggressive.

-sdpla iterations_number, --stride-data-prefetch-look-ahead iterations_number

Set the number of iterations for which data is prefetched into the cache ahead of time.

Default value is set to 4 iterations. (applicable only with the -sdp flag).

-sdpms stride_min_size, --stride-data-prefetch-min-size stride_min_size

Set the minimal stride size in bytes, for which data will be considered as a candidate

for prefetching. Default value is set to 128 bytes. (applicable only with the -sdp flag).

-shci pct, --selective-hot-code-inline pct

Perform selective inlining of functions in order to decrease the total number of

execution counts, so that only functions whose hotness is above the given percentage

are inlined.

-si, --selective-inline

Perform selective inlining of dominant hot function calls.

-sll Lib1:Prof1,...,LibN:ProfN, --static-link-libraries Lib1:Prof1,...,LibN:ProfN

Statically link hot code from specified dynamically linked libraries to the input

program. The parameter consists of comma-separated list of libraries and their profiles.

IMPORTANT: licensing rights of specified libraries should be observed when

applying this copying optimization.

-sllht hotness_threshold, --static-link-libraries-hotness-threshold hotness_threshold

Set hotness threshold for the --static-link-libraries optimization. The allowed input

range is between 0 (least aggressive) to 1, or -1, which does not require profile and

selects all code that might be called by the input program from the given libraries.

Default is 0.5.

-sidf percentage_factor, --selective-inline-dominant-factor percentage_factor

Set a dominant factor percentage for selective inline optimization. The allowed range

is between (0,100). Default is set to 80 (applicable only with the -si and -pbsi flags).

-siht frequency_factor, --selective-inline-hotness-threshold frequency_factor

Set a hotness threshold factor percentage for selective inline optimization to inline all

Post-Link Optimization for Linux on POWER

10 of 18

dominant function calls that have a frequency count greater than the given frequency
percentage. Default is set to 100 (applicable only with the -si -pbsi flags).

-slbp, --spinlock-branch-prediction

Perform branch prediction bit setting for conditional branches in spinlock code

containing l*arx and st*cx instructions (applicable after -bp flag).

-sldp, --spinlock-data-prefetch

Perform data prefetching for memory access instructions preceding spinlock code

containing l*arx and st*cx instructions.

-so, --stack-optimization

Reduce the stack frame size of functions which are called with a small number of

arguments.

-tb, --preserve-traceback-tables

Force the restructuring of traceback tables in reordered code. If -tb option is omitted,

traceback tables are automatically included only for C++ applications which use the

Try & Catch mechanism.

-rtb, --remove-traceback-tables

Remove traceback tables in reordered code.

-tlo, --tocload-optimization

Replace each load instruction that references the TOC with a corresponding

add-immediate instruction via the TOC anchor register, when possible.

-vro, --volatile-registers-optimization

Eliminate stores and restores of non-volatile registers in frequently executed functions

by using available volatile registers.

Output Options:

-d, --disassemble-text

Print the disassembled text section of the output program into output_file.dis_text file.

-dap, --dump-ascii-profile

Post-Link Optimization for Linux on POWER

11 of 18

Dump profile information in ASCII format into program.aprof (requires the -f flag).

-db, --disassemble-bss

Print the disassembled bss section of the output program into output_file.dis_bss file.

-dd, --disassemble-data

Print the disassembled data section of the output program into output_file.dis_data file.

-diap, --dump-initial-ascii-profile

Dump initial profile information in ASCII format into program.aprof.init (requires the

-f flag).

-dim, --dump-instruction-mix

Dump instruction mix statistics based on gathered profile information.

-dm, --dump-mapper

Print a map of basic blocks and static variables with their respective new -> old

addresses into a program.mapper file.

-o output_file, --output-file output_file

Set the name of the output file. The default instrumented file is program.instr. The

default optimized file is program.fdpr.

-pif, --print-inlined-funcs

Print the list of inlined functions along with their corresponding calling functions, in

ASCII format into a program.inlined file (requires the -si or -i or -isf flags).

-ppcf, --print-prof-counts-file

Print the profiling counters in ASCII format into a program.counts file (requires the -f

flag).

-simo, --single-input-multiple-outputs

Optimize in parallel into multiple outputs as specified by option sets read from stdin.

-sf, --strip-file

Post-Link Optimization for Linux on POWER

12 of 18

Strip the optimized output file.

-cep, --complement-edge-profile

Complements given partial profile information of basic blocks' frequencies by adding

missing basic block-to-basic block edge counts.

-spedir directory, --spe-directory directory

Set the directory into which SPE executables will be extracted and from which they

will be encapsulated.

-enc, --encapsulate

Encapsulate SPE executables present in the PPE input (see --spe-directory).

General Options:

-h, --help

Print online usage help.

-m machine-model, --machine machine-model

Generate code for the specified machine model. Target machine can be one of the

following models: power2, power3, ppc405, ppc440, power4, ppc970, power5,

power6, ppe, spe, spe_edp. Default is set to no machine.

-q, --quiet

Set quiet output mode, suppressing informational messages.

-st stat_file, --statistics stat_file

Output statistics information to stat_file. If stat_file is '-', output goes to standard

output. See --verbose for the default.

-V, --version

Print version.

-v level, --verbose level

Set verbose output mode level. When set, various statistics about the target optimized

program are printed into file program.stat. Allowed level range is between (0,3).

Post-Link Optimization for Linux on POWER

13 of 18

Default is set to 0.

-cell, --cell-supervisor

Integrated PPE/SPE processing. Perform SPE extraction, processing, and

encapsulation automatically prior to PPE processing.

Profiling SPE executable files

With PPE executables, a profile file is generated along with the instrumented file. It is then

filled with counts while the instrumented file runs. In contrast, with SPE executables, the

profile is generated when the instrumented executable runs. A PPE/SPE executable run

typically generates a number of profiles, one for each SPE image whose thread is executed.

Such profile accumulates the counts of all the threads which execute the corresponding

image. A SPE profile is generated by default in the output directory, and is named

<spename>.mprof by default (see the SPE Processing section below).

Note: If an old profile exists before instrumentation starts, the new data will be accumulated

in it. This may be desirable, e.g., if the user wants to combine profiles of number of

workloads. Otherwise, the old profile should be manually removed before commencing with

instrumentation.

Important: fdprpro uses a lock file /tmp/fdpr_xflck to synchronize between multiple SPE

threads attempting to update a common profile file. The file is created and removed one or

more times during an instrumented run. Following some exceptional conditions the file may

exist after instrumentation, which might cause problems in following instrumentation runs. It

is a good idea to remove this file, if it exists, before commencing with instrumentation.

Processing PPE/SPE executable files

The hybrid PPE/SPE executable file poses a veritable challenge to fdprpro. By default

fdprpro processes the executable file, depending on the target machine, PPE or SPE. If this

is a PPE file, its embedded SPE's are ignored. Two modes are available in order to fully

process the PPE/SPE hybrid file: integrated mode, and standalone mode.

Integrated mode

Integrated mode hides the details of SPE processing. It provides convenient interface for

Post-Link Optimization for Linux on POWER

14 of 18

performing the full PPE/SPE processing at the expense of lesser flexibilty. To fully process a
PPE/SPE file, simply add the -cell (or --cell-supervisor) to the standard fdprpro command.
For example:

 $ fdprpro -cell -a instr myprog -o myprog.instr

And, for optimization:

 $ fdprpro -cell -a opt myprog -f myprog.nprof -o myprog.fdpr

Two additional options might be useful here, -spedir, and -spefdir. The first specifies the

directory into which SPE files are extracted, where they are processed, and from where they

are encapsulated back into the PPE file. If this option is not specified, a temporary directory

is created and is deleted if fdprpro ends successfully. The -spefdir is usefull in the

optimization phase and specifies the directory where SPE profiles can be found (by default

they are expected in the same directory where the input program resides).

Standalone mode

In integrated mode the same optimization options are used when processing the PPE file and

when processing each of the SPE files. Full flexibility is available in standalone mode, where

the user specifies the explicit commands needed to extract the SPE files, process them, and

then encapsulate and process the PPE file:

Extraction

SPE images are extracted from the input program and placed as executable files in the
specified directory:

 $ fdprpro -a extract -spedir mydir myprog

SPE processing

The SPE images are processed one by one. All the output files should be placed in a
distinct directory by their original name:

 $ fdpdpro -a <action> mydir/<spe1> [-f <prof1>] [opts ...] -o outdir/<spe1>
 $ fdpdpro -a <action> mydir/<spe2> [-f <prof2>] [opts ...] -o outdir/<spe2>
 ...

The action is either instr or opt. The profile file is specified, as with the PPE case, by
the -f option. If not specified, it is assumed to be outdir/<spe.mprof>.

Note: FDPR_PROF_DIR environment variable cannot be used for overridinng profile
directory (see section Instrumentation and Profiling above).

Encapsulation and PPE processing

Finally the SPE files are encapsulated as a part of the actual PPE processing:

 $ fdprpro -a <action> --encapsulate -spedir outdir [opts ...] myprog

Note that this time -spedir is used to specify the output SPE directory.

Post-Link Optimization for Linux on POWER

15 of 18

ASCII profile

By default the profile generated by fdprpro is in some internal binary format. To allow

external tools to generate the profile, an ASCII profile is also supported (see

--ascii-profile-file).

The format of the ASCII profile file is:

 <Simple> address execCount </Simple>
 <Cond> address execCount fallthruCount </Cond>
 <Reg> address execCount fallthruCount regIndex
 type1 value1 execCount1
 type2 value2 execCount2
 ...
 typeN valueN execCountN
 </Reg>

The profile file is set of the Profile entries - Simple, Cond and Reg. The types in <Reg>

entries are Abs - for Absolute Values, Text - for Text addresses, Data - for Data addresses.

There are no other ``tags'' defined, there must not be white spaces between the tags` letters,

no comments. Addresses and Values can be in decimal or in hex form (starting with 0x).

For example -

 <Simple> 0x100000240 10 </Simple>
 <Simple> 0x100000250 20 </Simple>
 <Cond> 0x100000260 20 10 </Cond>
 <Simple> 0x100000270 20 </Simple>
 <Reg> 0x100000260 20 10 17
 Abs 23 5
 Text 0x100000300 5
 Data 0x200000400 10
 </Reg>

The order of the profile entries is not important, although for better readability they should be

sorted according to address. The ASCII profile file (extension .aprof) should contains entries

for code executed at least once. The code with execCount = 0 should not be included (it is not

forbidden but will not provide any information to fdpr). Generally it is sufficient to provide

one profile entry for each executed basic block. The address of that profile entry should be

any address within the basic block. Since fdprpro's internal basic block partitioning is not

always known, several profile entries may be provided for a single basic block up to the

maximum of one profile entry for each instruction. When several profile entries are provided

for a single basic block and they contain conflicting information (e.g., different execCount),

fdprpro will produce a warning starting with ``Conflicting profiling'' ... and ignore the later

conflicting information.

Post-Link Optimization for Linux on POWER

16 of 18

Human-readable output

In addition to the optimized or instrumented program, fdprpro produces human readable

output.

1. Standard output. The text that goes to standard output includes the signon message,

progress information and signoff message. The progress information displays the passage of

fdprpro along the different phases of processing, as follows:

 FDPR-Pro <version>
 fdprpro -a opt -O3 li.linux.gcc32.base
 > reading_exe ...
 > adjusting_exe ...
 > analyzing ...
 > building_program_infrastructure ...
 ...
 > updating_executable ...
 > writing_executable ...
 bye.

If the --quiet option is specified, no output is produced here.

2. Standard error. As usual, warnings and errors messages are written to the standard error

file. Note that fdprpro exists after the first error.

3. Statistics file. If the --verbose <level> option is selected, various kinds of statistics about

the program will be written to the statistics file, output_file.stat. The file consists of a list of

tables, typically in a form of <attribute> <value> per line. The amount of information is

determined by level. The following is an example, corresponding to the above invocation:

 options. group active_options
 options. optimization -bf -bp -dp -hr -hrf 0.10 -kr -las -lro -lu 9 -isf 12 -nop -pr -RC -RD -rt 0.00 -si -tlo -vro
 options. output -o 1.base

 global.use_try_and_catch: 0
 global.profile_info: not_available

 file.input: li.linux.gcc32.base
 file.output: 1.base
 file.statistics: 1.base.stat

 analysis.csects: 347
 analysis.functions: 343
 analysis.constants: 13
 analysis.basic_blocks: 5360
 analysis.function_descriptors: 0
 analysis.branch_tables: 10
 analysis.branch_table_entries: 374
 analysis.unknown_basic_units: 17
 analysis.traceback_tables: 0
 ...

Note, the options specified in the optimization group are the actual ones enabled by the -O3

option.

Post-Link Optimization for Linux on POWER

17 of 18

Importing code from shared libraries

Typically fdprpro optimizes a single target module (an executable file or a shared library),

without considering the cross-module flow of the program. The --static-link-libaries option

allows fdprpro to go beyond the boundary of the target module and import hot code (i.e.,

heavily used) from other modules to which it is dynamically linked. These modules are

referred below as SLL libraries.

For example, to import hot code from mylib.so using its profile mylib.so.prof, to myprog, use

the following command:

 $ fdprpro -sll mylib.so:mylib.so.prof -O3 -o myprog.fdpr -f myprog.prof myprog

For better performance results, it is highly recommended that users collect the profiles of the

specified SLL libraries with the same workload as the one used for training the target

program.

IMPORTANT: If an SLL library is later upgraded, the optimization must be rerun with the

upgraded library to keep the correspondence valid between that library and the target module.

IMPORTANT: It is the responsibility of the user to ensure that code copying from SLL

libraries is compliant with the usage license of these libraries.

FILES

installed_dir/bin/fdpr

The FDPR-Pro wrapper script (by default installed_dir is /opt/ibm/fdprpro).

installed_dir/bin/fdprpro

The actual FDPR-Pro executable (binary) program.

installed_dir/lib/libfdprinst32.so

The shared library used during profiling for ELF32 executable files.

installed_dir/lib/libfdprinst64.so

The shared library used during profiling for ELF64 executable files.

Post-Link Optimization for Linux on POWER

18 of 18

output_file.dis_text

The disassembly file of program text, produced by the --disassemble-text option.

output_file.dis_data

The disassembly file of program data, produced by the --disassemble-data option.

output_file.dis_bss

The disassembly file of program data, produced by the --disassemble-bss option.

output_file.mapper

The map of basic block and static variables. See the --dump-mapper option.

output_file.aprof_init

The initial profile information in ASCII format. See the --dump-initial-ascii-profile

option.

output_file.aprof

The ASCII-formatted profile file. See the --dump-ascii-profile option.

output_file.autoerr_log

In case of error, the file contains information related to the error. Please send it with

the bug report to fdpr@il.ibm.com.

output_file.stat

If --verbose <level> is specified the file will contain certain statistics about the target

program or about the optimization process.

