
Cell Broadband Engine

Security Software Development Kit 3.0

Installation and User’s Guide

Version 3.01

September 10, 2007

© Copyright International Business Machines Corporation, 2006, 2007

All Rights Reserved

Printed in the United States of America August 2007

The following are trademarks of International Business Machines Corporation in the United States, or
other countries, or both.

IBM PowerPC

IBM Logo PowerPC Architecture

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment, Inc., in the
United States, other countries, or both and is used under license therefrom.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products
described in this document are NOT intended for use in applications such as implantation, life
support, or other hazardous uses where malfunction could result in death, bodily injury, or
catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or
implied license or indemnity under the intellectual property rights of IBM or third parties. All
information contained in this document was obtained in specific environments, and is presented as an
illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS”
BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the
information contained in this document.

IBM Systems and Technology Group

2070 Route 52, Bldg. 330

Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Cell Broadband Engine resource center: http://www.ibm.com/developerworks/power/cell/

September 10, 2007

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01

9/18/2007 Page 3 of 44

Contents
1 Overview ... 5

1.1 What’s New for SDK 3.0 ... 5
1.2 How to obtain the CDA version .. 6
1.3 Supported platforms .. 6
1.4 Getting questions answered... 7
1.5 Related Documentation ... 7

2 Installing the Cell/B.E. Security SDK... 8
2.1 Security Subcomponents ... 8

3 Overview of the Cell/B.E. Security SDK ... 10
3.1 Components .. 10
3.2 LS Memory Map for SPE Secure Applications... 11
3.3 Return Error Codes ... 11
3.4 Usability of Tools in Emulated Isolation Mode ... 13

4 The Key Hierarchy ... 14
4.1 Key Naming Convention in this document .. 14
4.2 Application Trust Chain.. 15
4.3 Application Encryption Chain.. 20
4.4 Application Visible Keys ... 22

5 Secure File System Resource... 24
5.1 File Layout .. 24
5.2 Encrypted Contents ... 24
5.3 Using the SFS API’s... 25
5.4 Implementation .. 25

6 Building Secure Applications .. 26
6.1 Building and Testing the Application... 26
6.2 Securing the Application ... 26

7 “Hello, World!” Programming Example.. 28
7.1 SPU Example Code .. 28
7.2 PPE Example Code .. 29
7.3 Building the Sample Application .. 32

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

 Version 3.01

Page 4 of 44 9/18/2007

7.4 Execute the Sample Application ... 32
8 API.. 33

8.1 Data Transfer through Open Area of LS... 33
8.2 Secure File Storage... 35
8.3 PPE-Assisted Functions... 39

9 SDK Programming Examples ... 43
9.1 Changing the default compiler.. 43
9.2 System root directory (for simulator users only) .. 43
9.3 File I/O Programming Example ... 44
9.4 Copying Encrypted Data Example ... 44
9.5 Copying Encrypted Data with Replay Protection Example... 44
9.6 Encrypted SPU Application Example .. 44

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 Overview

9/18/2007 Page 5 of 44

1 Overview

The IBM Security Software Development Kit (SDK) for Cell Broadband Engine™ (Cell/B.E.™) is a
complete package of tools for security-sensitive applications. Broadly speaking, users can choose
between two approaches. With the first approach, the application developer simply signs and encrypts
SPU (Synergistic Processing Unit) applications. The applications will remain encrypted until
immediately before execution thus thwarting reverse engineering and piracy attempts. Furthermore,
the application is verified for authenticity and integrity immediately before execution. This feature
makes tampering, reverse engineering, and piracy much more difficult for the adversary. In essence,
the platform and the tools provide a secure communication channel between the application developer
and the legitimate application user.

For applications which require a higher level of protection, there is the second approach which builds
upon the first approach. This approach invokes the hardware SPU isolation mode whereby the
hardware provides a “vaulted” execution environment for the SPU application. The applications are
decrypted and verified immediately before execution just as in the first approach, but the decrypted and
verified application is further protected during execution. This feature is unique to the Cell/B.E. and is
considered a processor architecture differentiator. Details of the processor Cell/B.E. security
architecture can be found in publications listed in section 1.5, “Related Documentation”.

1.1 What’s New for SDK 3.0

1.1.1 Two Versions

For the SDK 3.0 release, there are two versions of the Cell/B.E. security package. One version, “the
publicly available” version can be downloaded from IBM developerWorks. The other version, “the
confidentiality and disclosure agreement (CDA)” version requires the customer to sign a CDA with
IBM to obtain the package. This is how the two versions compare:

The publicly available version:

• Can be determined by the version number of the RPMs: cell-spu-isolation-<>-0.3-x.<>.rpm

• Does application signing and verification using asymmetric cryptography.

• Replaces symmetric cryptographic encryption with logical XOR function for application
encryption and for data encryption library functions.

The CDA version:

• Can be determined by the version number of the RPMs: cell-spu-isolation-<>-3.0-x.<>.rpm

• Does application signing and verification using asymmetric cryptography.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Overview Version 3.01

Page 6 of 44 9/18/2007

• Uses symmetric cryptography for application encryption and for data encryption library
functions.

• Supplies a security-enabled Cell/B.E. simulator with which the user can simulate the
hardware SPU isolation mode.

• Additional library routines which assist with the isolated SPE programming.

1.1.2 Emulated Isolation Mode

With previous releases, users were constrained to use a security-enabled simulator to execute the
run-time Cell/B.E. Security SDK stack. However, with the introduction of the emulated isolation
mode in this release, users may develop and execute the security software stack on an IBM QS20/21
or a regular (non-security-enabled) simulator.

This is the mode that should be used by developers who will only encrypt and sign applications and
do not intend to use the hardware SPU isolation feature.

The emulated isolation mode allows the GDB (GNU project debugger) to work with the security
application during its development.

1.1.3 Key Hierarchy

The key hierarchy and management have been much improved for SDK 3.0. Industry standard
features such as Certificate Revocation Lists (CRL) and tiered Certificate Authority (CA) hierarchy
is now part of the architecture.

1.1.4 Secure File Storage

A new set of APIs for file storage allow users to read and write an encrypted and verified file. The
interface is near identical to the standard file I/O API and therefore, users can use this facility
transparently.

1.2 How to obtain the CDA version

Please contact your IBM customer representative.

1.3 Supported platforms

The Cell/B.E. Security SDK 3.0 is supported on all of the platforms supported by the Cell/B.E. SDK
3.0, including:

• x86

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 Overview

9/18/2007 Page 7 of 44

• x86-64

• 64-bit PowerPC (PPC64)

• Cell/B.E.-based blade server (QS20, QS21)

An application developed on any one of the above platforms can be executed on the Cell/B.E. blade
server or the Full-System Simulator on any of the other above platforms

1.4 Getting questions answered

Please post your questions to the developerWorks Cell Broadband Engine Architecture forum
online.

1.5 Related Documentation

• “Cell Broadband Engine processor security architecture”, http://www-
128.ibm.com/developerworks/power/library/pa-cellsecurity/

• “SPE Runtime Management Library”, installed in /opt/cell/sdk/docs/lib/

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Installing the Cell/B.E. Security SDK Version 3.01

Page 8 of 44 9/18/2007

2 Installing the Cell/B.E. Security SDK

Before installing the Cell/B.E. Security SDK, you need to install the Cell/B.E. SDK. Please see the
Cell/B.E. SDK Installation and User’s Guide for instructions for installing the Cell/B.E. SDK. This
chapter assumes that you have installed the Cell/B.E. SDK on your host system and are now ready to
install the Cell/B.E. Security SDK.

2.1 Security Subcomponents

The Cell/B.E. Security SDK consists of a set of optional Cell/B.E. SDK RPMs that are installed using
yum or a graphical installer (e.g., pirut or pup). The security RPMs are optional subcomponents of the
following Cell/B.E. SDK components

Cell Development Tools

 Build Tool – binaries and source

Cell Development Libraries

 Libraries & Headers

 Secure Loader (cross development)

Cell Runtime Environment

 Secure Loader (ppc)

Cell Programming Examples

 Samples

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 Installing the Cell/B.E. Security SDK

9/18/2007 Page 9 of 44

The table below shows a complete list of RPMs that can be installed for each supported platform.

Component Area x86 PPC64 Cell-based Blade Server

Build Tool cell-spu-isolation-
tool-0.3-5.i386.rpm cell-spu-isolation-tool-0.3-5.ppc.rpm

Build Tool - source cell-spu-isolation-tool-source-0.3-5.noarch.rpm

Libraries & Headers
cell-spu-isolation-
cross-devel-0.3-
5.noarch.rpm

cell-spu-isolation-devel-0.3-5.ppc.rpm

Secure Loader
cell-spu-isolation-
loader-cross-0.3-
5.noarch.rpm

cell-spu-isolation-loader-0.3-5.ppc.rpm

Samples cell-spu-isolation-emulated-samples-0.3-5.noarch.rpm

If desired, all of the security SDK RPM’s can be easily installed using the command
 yum install cell-spu-isolation*

The samples rpm installs only source code. Once installed, the samples are built by the following
command sequence:
 cd /opt/cell/sdk/prototype/src/examples/isolation
 make

If any cross development rpm’s are installed or the samples are built for a cross development
environment, then the sysroot needs to be synchronized for the simulator environment. This is
accomplished by executing the script
 /opt/cell/cellsdk_sync_simulator

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Overview of the Cell/B.E. Security SDK Version 3.01

Page 10 of 44 9/18/2007

3 Overview of the Cell/B.E. Security SDK

3.1 Components

This section describes the contents of the SDK and how the various components work together.

The spu-isolated-app tool: In step 1 of the diagram, spu-isolated-app encrypts and signs the SPE
application during build-time. The user can specify the keys used for signing and encryption. Because
of this step, the SPE application is now a SPE secure application. The tool binary can be found at
/opt/cell/sdk/prototype/usr/bin/spu-isolated-app.

Libspe: libspe is the runtime SPE thread management library. The PPE code which invokes the SPU
secure application must specify that the SPE thread run in emulated-isolation or isolation mode (in
step2 of the diagram).

The flag to be used for emulated-isolation mode is SPE_ISOLATE_EMULATE.

The flag to be used for isolation mode is SPE_ISOLATE. This flag should only be used on security-
enabled Cell/B.E. platforms or the security-enabled simulator.

More details can be found in the libspe documentation (reference in section 1.5).

SPE Secure Loader: because the SPE thread was specified to run in emulated-isolation or isolation
mode, the SPE Secure Loader is loaded and started on the SPE (step 3). It loads the SPE Secure
Application, cryptographically verifies its integrity and authenticity, and decrypts it. If the verification
succeeds, the SPE Secure Loader starts the application’s execution. If the verification fails, the SPE
Secure Loader does not execute the application and returns an error via libspe (more about error code
in section 3.3). The secure loader for emulated-isolation mode can be found in /usr/lib/spe.

SPE Secure Loader
emulated-loader.bin

SPE
Secure

App

spu-isolated-app

libisolation

SPEPPE

PPE App

libspe

2

1

3

4

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 Overview of the Cell/B.E. Security SDK

9/18/2007 Page 11 of 44

Libisolation: libisolation must be linked with the SPE Secure Application when the functions listed in
the API section (section 8) and PPE-assisted library calls (standard C library functions) are used in the
SPE Secure Application. The library can be found in /opt/cell/sdk/prototype/usr/spu/lib/libisolation.a
on a native Cell/B.E. platform and in /opt/cell/sysroot/opt/cell/sdk/prototype/usr/spu/lib/libisolation.a
on a cross-compiling environment.

3.2 LS Memory Map for SPE Secure Applications

The SPE Secure Loader loads the application code at LS location 0x00080, which is the same address
as for a non-isolated application. After the verification and (optional) decryption of the application, the
SPE Secure Loader will branch to the secure application, and the Local Store has the following layout.

Stack

0x40000

0x3E000

LS Memory Map

0x00080

Free Space

SP

0x00000

App.

_app_end

auxiliary buffer
0x3E0C0

The application stack starts at address 0x3E000 and grows towards the lower addresses.

The area marked “auxiliary buffer” is the buffer area for PPE-assisted library functions. This buffer
area is at least 192 bytes and the area between 0x3E000 and 0x3E0C0 is reserved for this buffer. There
is an API available (described in section 8) for growing the auxiliary buffer area. The area will grow
towards the higher addresses.

For this release of the Cell/B.E. Security SDK, a secure application, including code and static data, is
limited to a maximum size of 167KB. However, the runtime application space is extended to 247KB.

3.3 Return Error Codes

The libspe functions will return errors that will guide the programmer on where problems are
happening. There are three libspe functions that are called in order to launch a secure SPE thread.
In section 7, a “hello world” example is introduced to illustrate how these functions are used to
launch a secure SPE thread.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Overview of the Cell/B.E. Security SDK Version 3.01

Page 12 of 44 9/18/2007

3.3.1 spe_context_create()

No errors specific to the SPE_ISOLATE_EMULATE are returned. However, if ENODEV1 is
returned, the programmer should verify that the SPE_ISOLATE flag was not used instead of the
SPE_ISOLATE_EMULATE flag. ENODEV will be returned if the Cell/B.E. platform is not
hardware security enabled and SPE_ISOLATE flag is used.

3.3.2 spe_program_load()

If the SPE_ISOLATE_EMULATE or SPE_ISOLATE flag is set, and the SPE application is not
formatted as the SPE secure application, this function will return an ENOEXEC and a return value
of “-1”. In other words, the programmer had requested an isolated thread on a program that has not
been signed by the spu-isolated-app tool.

3.3.3 spe_context_run()

If libspe returns stop_reason value of “7”, this indicates that it is an SPE_ISOLATION_ERROR
type. The spe_exit_code will further indicate what kind of isolation error has been returned.

spe_
exit_
code

Error reason Possible problems & fixes

1 Application image is too large Application image may be larger than the
permitted 200KB.

2 Application header is incorrect An application built in a “public SDK”
development environment may be executing in a
“CDA SDK” runtime environment. Verify that
the application has been rebuilt since the “CDA
SDK” was installed.

3 Application decryption has failed.

4 Application authentication has
failed

The certificates and keys that are used by the SPE
Secure Loader at runtime may be missing on the
system. The directory location of these are listed
in section 4.2.6

1 An older kernel may cause libspe to return EFAULT instead.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 Overview of the Cell/B.E. Security SDK

9/18/2007 Page 13 of 44

3.4 Usability of Tools in Emulated Isolation Mode

Because the emulated isolation mode, unlike the hardware-based isolation mode, does not physically
“lock-up” the LS, it is possible to use diagnostic tools such as GDB (the GNU debugger). GDB can be
used in the same manner for emulated isolation mode SPU applications as it is for normal SPU
applications. The SPU extensions for ppu-gdb is documented in the Cell/B.E. Programmer’s Guide
which can be found under /opt/cell/sdk/docs.

It is expected that this feature is only used during development and when the application is ready to be
deployed, the developer will strip out the symbols in the application binary.

For this release of the SDK, the performance profiling tool, oprofile, cannot be used for emulated
isolation mode SPU programs. It is expected this will be supported in future releases.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

The Key Hierarchy Version 3.01

Page 14 of 44 9/18/2007

4 The Key Hierarchy

For many customers, the key hierarchy is important from both a flexibility and security perspective.
Most application developers will interface with the application-level keys, and thus, the key hierarchy
must be designed to meet their needs. At the same time, customers need to be convinced that the key
hierarchy solution that we are providing is indeed secure and protects against the attack profiles that
they are concerned with.

The key hierarchy is grounded in the unique Cell Security architecture which relies on a hardware root
key. The hardware root key is the “grandfather key of them all” and the security of all the other keys in
the key hierarchy comes down to the hardware root key. For users who are comfortable without the
hardware solution, the root of trust starts in the SPE Secure Loader.

Although the foundational layers of the key hierarchy are unique to Cell, the application layers use an
industry standard such as X.509 for better industry and customer adoption.

4.1 Key Naming Convention in this document

• Kpub[Name] is the public key of an RSA key pair of the name Name. Unless otherwise noted,
2048-bit size key is used in this release of the SDK.

• Kpriv[Name] is the private key of an RSA key pair of the name Name. Unless otherwise noted,
2048-bit size key is used in this release of the SDK.

• CA is short for “Certificate Authority”, a common concept in a public key infrastructure
system.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 The Key Hierarchy

9/18/2007 Page 15 of 44

4.2 Application Trust Chain

4.2.1 Overview

At run-time, the goal is to verify that the application image has not been tampered since shipment and
that the application is authorized to execute on the platform. Every time an SPE Secure Application is
about to be executed, the trust chain is re-verified from the root of trust2 all the way up to the signature
on the application.

1. The hardware root key is used to verify the signature on the Public Key of the Root Certificate

Authority (CA), Kpub[RootCA]. This is to check that Kpub[RootCA] has not been tampered
with and is authorized to be used as the root CA for the system.3

2. Once the integrity and authenticity of the Kpub[RootCA] is verified, it is used to verify the
signature of one of the second level CA public keys, Kpub[CA_i].

3. Once the appropriate Kpub[CA_i] is verified, it is used to check the first-level Application
Authentication Key, Kpub[App_Auth_0] embedded in the application image.

4. There can be an arbitrary length chain of Application Authentication Keys.
5. The last Application Authentication Key, Kpub[App_Auth_n] is used to verify the Application

image.
6. At this point, the application verification is complete, and the application will start executing.

2 for emulated isolation mode, the root is the key in the SPE secure loader and for hardware isolation mode, the root is the
key embedded in the hardware
3 This step is skipped for emulated isolation mode.

H a rd w a re R o o t K e y

K p u b [R o o tC A]

K p u b [C A _ 0]

A p p lic a tio n

L o a d e r K e y R in g
…

…

K p u b [A p p _ A u th _ 0]

K p u b [A p p _ A u th _ n]

S P E S e cu re L o a d e r

A p p lica tio n Im ag e

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

The Key Hierarchy Version 3.01

Page 16 of 44 9/18/2007

Some Key Points:
• At any point, if the verification fails, the execution stops. The application will not be started.
• Because the application keys must be signed by a CA key, this feature provides control to the

platform owner on which secure SPE application can run on this platform. Applications with
application keys that are not signed by the approved CAs will not be able to execute on the SPE
using the isolation (hardware-based or emulated) modes.

4.2.2 Component View

4.2.2.1 SPE Secure Loader

The Kpub[RootCA] key that is embedded in the SPE Secure Loader image is a static key for the
lifetime of the platform. It cannot be revoked.

4.2.2.2 Loader Key Ring

Instead, the flexibility is provided in the SPE Loader Key Ring which is stored in a file independently
from the SPE Secure Loader and is read from and written to (only) by the SPE Secure Loader. The
Loader Key Ring contains the set of (non-Root or second-level) CA public keys.

By adding a key onto the key ring, the particular Cell/B.E. system is effectively entered into a group
administrated by the CA; if the key is removed, the device is removed from the group or the key has
been revoked due to a security breach.

4.2.2.3 Application Image

The Application Image format contains the application binary, the Application Authentication Keys
Certificate in X.509 format, and the signature value. The Application Authentication keys can be
revoked and/or expired.

How many applications use the same Application Authentication key is determined by the developer.
Some developers may choose to have many applications have the same Application Authentication
Key. This implies that these applications implicitly trust each other. Conversely, applications that do
not trust each other should not have the same Application Authentication key.

4.2.3 The Players

4.2.3.1 Root CA

The Root CA is most likely the manufacturer or the distributor of the Cell-based system. It has the
power to authorize which CA can accept or reject application developers’ certificates for those systems.

4.2.3.2 CA

The CA organization has the role of signing the application developer certificates. By signing these
certificates, the CA is authorizing the developer’s applications to run in SPE emulated or hardware
isolation mode.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 The Key Hierarchy

9/18/2007 Page 17 of 44

4.2.3.3 Application Developers

Application developers create applications to be deployed on the Cell/B.E. They have the option of
signing and/or encrypting the application for secure delivery of the code. The public key counterpart to
the application signing key must be signed by one of the approved CAs.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

The Key Hierarchy Version 3.01

Page 18 of 44 9/18/2007

4.2.4 Summary

Key Name Symbol Function Owner Location

Application
Authentication
Key (Private)

Kpriv[AppAuth_i] Sign the
application.

Developer Developer

Application
Authentication
Key (Public)

Kpub[AppAuth_i] Verify the
application.

Developer Embedded in
application
image.

(Second-level)
CA Key
(Private)

Kpriv[CA_i] Sign the
Application Key
(Public)
Certificate

CA CA

(Second-level)
CA Key
(Public)

Kpub[CA_i] Verify the
Application Key
Certificate

CA SPE Secure
Loader Key
Ring (see
below)

Root CA Key
(Private)

Kpriv[RootCA] Sign the (Second-
level) CA
certificates

Root CA,
Platform
Owner

Root CA

Root CA Key
(Public)

Kpub[RootCA] Verify the
(Second-level)
CA certificates

Root CA Embedded in
SPE Secure
Loader

Certificate
Revocation
List for CA

CRL[CA] Revoke the
(Second-level)
CA certificates

Root CA Filesystem (see
below)

Certificate
Revocation
List for
Applications

CRL[AppAuth] Revoke the
Application
Authentication
Key Certificates

(Second-
level) CA

Filesystem (see
below)

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 The Key Hierarchy

9/18/2007 Page 19 of 44

4.2.5 Usage Guide on Application Authentication Keys

Users can simply use the sample key provide with the SDK to sign their application. In the sample
directory, a sample signing key and its corresponding public key certificate is provided. In section 6.2,
we discuss how to modify the Makefile to point to the signing key and the public key certificate.
Please see below for the location of the keys.

Alternatively, users may generate their own application signing key (i.e. Application Authentication
Key pair). In this case, the user must sign the application verification key (i.e. Application
Authentication, Public) with a CA signing key (i.e. CA key, private). A CA signing key is provided as
part of the SDK, and the user may use a tool such as OpenSSL to do the RSA signing. Please see
below for the location of the key.

4.2.6 File locations

Key Name Path name

Sample
Application
Authentication
Key (Private)

/opt/cell/sdk/prototype/src/examples/isolation/keystore/user_sign_key.pem

Sample
Application
Authentication
Key (Public)

/opt/cell/sdk/prototype/src/examples/isolation/keystore/user_signed_crt.pem

CA signing key /etc/pki/cell-spu-isolation/CA/ca.signing_key.private.pem

Certificate
Revocation List for
CA

/etc/pki/cell-spu-isolation/loader/rootca.revoked_ca.crl

Certificate
Revocation List for
Applications

/etc/pki/cell-spu-isolation/loader/ca.revoked._app_cert.crl

SPE Secure Loader
Key Ring

/etc/pki/cell-spu-isolation/loader/rootca.approved_ca.keyring

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

The Key Hierarchy Version 3.01

Page 20 of 44 9/18/2007

4.3 Application Encryption Chain

There are many advantages to encrypting the application. For one, it makes code reverse-engineering
more difficult and secrets in the code easier to protect. Furthermore, it gives the application distributor
more control over the application deployment. For example, the application distributor can force
authentication to always happen before the application is executed so that a hacked version is never
executed. Or, application encryption gives the distributor the ability to allow only approved users to
run the application in the manner of DRM (digital rights management).

Without encryption and with only a digital signature, an adversary can remove the signature so that the
binary is freely executable just as any non-secure binary.

4.3.1 Application at Build Time

At build-time, the application is encrypted by a derivative of two keys.

The first key is the SPE Secure Loader’s Application Decryption Key (Public Key). The Application
Decryption Key pair is an RSA key pair used for encrypting application so that only the SPE Secure
Loader with the key pair can decrypt it.

The second key is the application’s Application Authentication Key (Public Key). By encrypting with a
derivative of this key, the decryption will be tied to the application. This prevents a rogue application
from decrypting the encrypted section of another application.

For further details, please see the example described in section 9.6

4.3.2 Application at Execution Time

At execution time, the SPE Secure Loader will decrypt the application image using a derivative of two
keys.

The first key is the SPE Secure Loader’s Application Decryption Key (Private Key). This is the private
key counterpart to the public key that was used to encrypt the application.

The second key is the application’s Application Authentication Key (Public Key) which is the same key
used to authenticate the application. This ensures that only applications that have correctly
authenticated are decrypted. A rogue application that authenticates with a different key cannot have
the encrypted data decrypted by the SPE Secure Loader.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 The Key Hierarchy

9/18/2007 Page 21 of 44

4.3.3 Summary

Key Name Symbol Function Owner Location

Application
Decryption Key
(Private)

Kpriv[Loader_Decrypt] Used by the SPE
Secure Loader to
decrypt the
application

SPE Secure
Loader

SPE Secure
Loader

Application
Decryption Key
(Public)

Kpub[Loader_Decrypt] Used by the
application
developer to
encrypt the
application

SPE Secure
Loader

File system4

Application
Authentication
Key (Public)

Kpub[AppAuth_i] Used in the
encryption
process so that
the encryption is
tied to that
particular
application

Developer Embedded in
application
image.

Note: In the public release of the SDK, encryption is replaced with XOR. Users should obtain the
CDA version of the Cell/B.E. Security SDK in order to use the encryption capabilities. However, in
the public SDK, the keys are still placed in the user’s environment and the build and run-time
environment interface is identical to the CDA version.

4 Kpub[Loader_Decrypt] is installed in /etc/pki/cell-spu-isolation/loader/loader.app_encrypt_key.public.pem

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

The Key Hierarchy Version 3.01

Page 22 of 44 9/18/2007

4.4 Application Visible Keys

During run-time, keys are generated by the SPE Secure Loader to be passed to the SPE Secure
Application. These keys are passed via the API of the calling interface.

The calling interface for an SPE Secure Application is as follows:

int (*secure_app_main_func_t) (
 unsigned long long /* spe_id */,
 unsigned long long /* param */,
 unsigned long long /* env */,
 void * /* secure_env_t * */);

The parameters passed to a secure application are always NULL; that is, parameter passing from the PPE
application to the SPE secure application is not supported.

The SPE Secure Loader passes additional parameters to the secure application using the fourth
parameter, secure_env. The structure of this parameter is as follows:

typedef struct {
 vector unsigned char app_set_shared_key;
 vector unsigned char app_version_specific_key;
} secure_env_t;

These keys are described in the following sections.

4.4.1 Application Set Shared Key (128-bit)
app_set_shared_key

This is a 128-bit secret value that is passed to applications which share the same Application
Authentication Key and are running on the same platform. If two different applications have different
Application Authentication Keys, they will be passed different Application Set Shared Keys. If two
different applications are intended to run on different systems (system owned by A and system owned
by B for example), they will be passed different Application Set Shared Keys.

The intent for this Application Set Shared Key is for two or more applications to have a shared key
because these applications are intended to work together and are developed by the same application
developer, the owner of the Application Authentication Key. The Application Set Shared Key is tied to
a particular system so that the data encrypted by the key cannot be decrypted by an owner of another
system.

One of the advantages of this key to the application developer is that it is given to the application “for
free” and does not need to be explicitly managed and stored by the application.

Summary : Application Set Shared Key is tied to a specific SPE Secure Loader instance and to a
specific Application Authentication Key (Public).5

5 For the public SDK, because encryption could not be used, these Application Visible Keys are not robustly tied to the
parent keys. A user would need the CDA version of the SDK, to obtain the robust implementation of this design.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 The Key Hierarchy

9/18/2007 Page 23 of 44

All SPEs on the same Cell/B.E. system will use the same SPE Secure Loader.

4.4.2 Application Version Specific Key (128-bit)
app_version_specific_key

This is a 128-bit secret value that is dependant on the version of the application. Thus, when the
application is upgraded, the key value that is passed to the application will also change. Therefore, any
data that is encrypted with this key by a newer version of the application can not be decrypted by an
older version of the application. This is valuable when an older version of the application is known to
have a security hole.

As with the Application Set Shared Key, this key is also tied to a specific platform and is not a shared
value across multiple systems. And again, one of the advantages of this key is that it does not need to
be explicitly managed or stored by the application.

Summary : Application Set Shared Key is tied to a specific SPE Secure Loader instance, a specific
Application Authentication Key (Public), and to a specific application binary.

All SPEs on the same Cell/B.E. system will use the same SPE Secure Loader.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Secure File System Resource Version 3.01

Page 24 of 44 9/18/2007

5 Secure File System Resource

The Secure File System (SFS) resource provides a set of APIs that implement reading and writing an
encrypted and verified file. The model follows the standard I/O fopen, fread, fwrite, and fclose model,
but the data is encrypted before it is written to the file system and decrypted after it is read from the file
system. In addition, each data block is compared against separate verification data to ensure that it has
not been corrupted since it was written.

5.1 File Layout

An SFS file comprises a header section written by the resource, the data section with content from the
caller, and the verification section written by the resource. A caller will not have any access to the the
header or verifier sections through any of the SFS API’s; rather, the caller will read and write only the
data section; all data verification occurs within the SFS API’s and the results of data verification are
reported only if there is a verification failure (e.g., data tampering was detected).

The header section is read during the sfs_fopen call to verify the encryption key passed on the call. If
the encryption key does not verify, then the file is immediately closed and a NULL stream is returned
to the caller with errno set to EINVAL.

The verification section contains a verifier for each data block and a file verifier that is the hash over
the header section and all other verifiers. This section is read and the file verifier is checked as part of
the sfs_fopen call. If the computed file verifier does not match the verifier read from the file, then the
file is immediately closed and a NULL stream is returned to the caller with errno set to EIO.

The header section and verification section are updated as part of the sfs_fclose call for any SFS file
opened for writing. Otherwise, the header and verification sections are buffered in the SPE local
storage, which limits the total size of SFS files (see section 5.3).

5.2 Encrypted Contents

All data written to a Secure File System file is encrypted with the key provided by the caller on the
sfs_fopen call; this includes the header section, the verification section, and the contents of the data
section. Two different secure applications may share the contents of an SFS file if they share the
encryption key. Thus, the management of the encryption keys determines which applications have
access to the contents of an SFS file.

It is still the responsibility of the file system to manage access to the SFS files. However, the contents
should not be decipherable to an application without the encryption key, and any tampering of the file
contents will be detected by the verification of the file header or checking the verification data when
the file is opened, or finding a verification fault when data is read from the file.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 Secure File System Resource

9/18/2007 Page 25 of 44

5.3 Using the SFS API’s

The easiest method to write programs using the SFS API’s is to use the standard I/O API’s fopen,
fread, fwrite, and fclose. The SFS API’s were designed to closely mimic the corresponding standard
I/O API, and to return the same error codes when this made sense. This means that porting an existing
application to use the SFS resource can be reasonably easy.

It is important that the error codes used for verification failures (EINVAL for failure to verify the
encryption key, and EIO for conflicts with verification data) are considered and appropriate action is
taken to avoid leakage of information or use of corrupted information.

5.4 Implementation

For the publicly available version, XOR with a static key is used for the data encryption and a cyclic
redundancy check (CRC) is used for data verification. For the CDA version, symmetric cryptography is
used for data encryption and SHA-1 is used for data verification.

The SFS resource maintains information about each open file. This includes the current header section,
the verification section, a data buffer, and additional navigation information. The total overhead for this
information is approximately
 overhead = 604 bytes + (number of packets + 1) * 20

where the number of packets is equal to the size of the data content divided by 512 (the data content is
organized into 512 packets). The CDA version has an additional 240 bytes of overhead.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Building Secure Applications Version 3.01

Page 26 of 44 9/18/2007

6 Building Secure Applications

The normal process flow would comprise the following steps:

1. Building and testing the application

2. Securing the application

3. Running the application in emulated isolation mode

6.1 Building and Testing the Application

The most common way to build and test a secure application would be to build and test the application
as a non-secure application using all of the standard tools and libraries of the SDK, and then modify the
application to invoke the SPE emulated isolation mode. Please see the Cell Broadband Engine
Programming Tutorial for instructions and tips for programming using the non-secure SDK.

6.2 Securing the Application

Modifying an existing application to run in SPE isolation mode involves the following steps:

1. Modify the spe_context_create of the existing PPE application to add the
SPE_ISOLATE_EMULATE flag as a parameter. These changes signal to libspe that the SPE is to be
placed into emulated isolation mode.

2. Replace the include of make.footer with make.iso.footer in your Makefile for your SPU
code, and add the defines for ISO_SIGN_KEY and ISO_SIGN_CERT, for the files containing the
application signing key and application signing certificate. Both the signing key and signing
certificate must be in PEM format. Optionally, add the defines for ISO_ENCRYPT_SEC if a
section of the application is to be encrypted. ISO_ENCRYPT_SEC may be the name of an ELF
section of the SPE application or ALL if all code and data sections are to be encrypted. This step
invokes the Build Tool to sign and (optionally) encrypt the SPE application prior to its being
embedded within the PPE application. (Please see the Makefiles in the examples directories for
concrete examples.)

3. Finally, build the application.

6.2.1 SPE Secure Application Build Tool, spu-isolated-app

The isolated SPE application build tool is a standalone application that signs and (optionally) encrypts
the SPE secure application using the supplied keys. The specifics of the key usage model and hierarchy
are described in the “Key Hierarchy” section.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 Building Secure Applications

9/18/2007 Page 27 of 44

The tool binary is installed as /opt/cell/sdk/prototype/usr/bin/spu-isolated-app. The source,
installed by the cell-spu-isolation-tool-source rpm, is installed in the directory
/opt/ibm/cell-sdk/prototype/src/tools/isolation

The flow at build-time is as follows:

1. The developer codes the application. At this point, the developer can annotate one block of
code or data that will be encrypted.

2. Using the regular compiler and linker, an SPE-ELF (Executable and Linkable Format)
executable is generated.

3. The build tool takes the SPE-ELF executable and, using keys provided for signing, generates an
image that is signed and (optionally) encrypted.

4. The output format of the build tool is SPE-ELF compatible.

The application is called with the following parameter list:
spu-isolated-app <infile> <outfile> <signKey> <signCert> [<encryptSec>]

where
infile is the name of the input file (SPE ELF executable)
outfile is the name of the output file (secure SPE ELF executable)
signKey is the name of the file containing the Application Authentication Private Key for

signing
signCert is the name of the file containing the signed X.509 Application Authentication

Public Key certificate for certifying the digital signature of the file
encryptSec is the name of the section to encrypt or ALL if all sections, both code and data, are

to be encrypted

The build tool expects keys and certificates in PEM format. If you have keys or certificates in DER
format, then you can convert to PEM format using openssl or other tool.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

“Hello, World!” Programming Example Version 3.01

Page 28 of 44 9/18/2007

7 “Hello, World!” Programming Example

Consider the code for a standard Hello World! example. The example can be found in the directory
/opt/cell/sdk/prototype/src/examples/isolation/iso_simple.

The standard part of the “Hello, World!” example will execute from within the SPU; the largest change
from a standard program is the PPE code which starts the SPE code.

7.1 SPU Example Code

The SPU code for spu/hello_spu.c would be as follows:

#include <stdio.h>

int main()
{
 printf("Isolate Sample: Hello Cell!\n");
 return 0;
}

Even though the library code for printing is substantially different for the SPE environment, the basic
code is very familiar.

The spu/Makefile for the SPU application follows:

Target
PROGRAMS_spu := hello_spu

SECURE_LIBRARY_embed := lib_hello_spu.a

Local Defines
ISO_SIGN_KEY = ../../keystore/user_sign_key.pem
ISO_SIGN_CERT = ../../keystore/user_signed_crt.pem

make.iso.footer
include $(CELL_TOP)/buildutils/make.iso.footer

The PROGRAMS_spu defines the SPU target executable. The SECURE_LIBRARY_embed defines the name
of the library which is to contain the SPU executable in a form that can be embedded in the PPE
executable.

An isolated SPU executable needs to be signed by the user and then verified by the SPE Secure Loader.
ISO_SIGN_KEY defines the private RSA signing key. ISO_SIGN_CERT defines the X.509 certificate that
is used by the SPE Secure Loader to verify the digital signature on the SPU executable; this is included
within the PPE embeddable object. The keys used here are the prototype keys delivered with the
samples code.

Finally, make.iso.footer replaces make.footer for the isolated SPU Makefile.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 “Hello, World!” Programming Example

9/18/2007 Page 29 of 44

7.2 PPE Example Code

Our PPE code for iso_simple.c is responsible for starting the isolated SPU function, waiting for the
SPE program to complete, executing a printf with the SPE result code, and then cleanly exiting. This is
very similar to the PPE code for a non-secure application, except for the use of the
SPE_ISOLATE_EMULATE flag. So, our PPE code would be as follows:

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

“Hello, World!” Programming Example Version 3.01

Page 30 of 44 9/18/2007

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <libspe2.h>
#include <pthread.h>

extern spe_program_handle_t hello_spu;

/* arguments list of a PPU thread */
typedef struct ppu_pthread_data {
 spe_context_ptr_t spe_id;
 pthread_t pthread;
 unsigned int entry;
 unsigned int flags;
 void *argp;
 void *envp;
 spe_stop_info_t stopinfo;
} ppu_pthread_data_t;

/**
 * The entry point of a PPU thread to start an SPE application.
 */
void *ppu_pthread_function(void *arg) {
 ppu_pthread_data_t *datap = (ppu_pthread_data_t *)arg;
 int rc;
 do {
 if((rc = spe_context_run(datap->spe_id, &datap->entry, datap->flags, datap-
>argp, datap->envp, &datap->stopinfo)) < 0) {
 perror("failed running context");
 exit(1);
 }
 } while(rc > 0); // loop until exit
 pthread_exit(NULL);
}

/**
 * Entry point of 'iso_simple'
 */
int main(int argc __attribute__ ((unused)), char **argv __attribute__ ((unused)))
{
 ppu_pthread_data_t data;
 int rc;

 /* Create an SPE-threads in isolation mode to execute 'hello_spu'. */
 /* Create conext */
 if ((data.spe_id = spe_context_create (SPE_ISOLATE_EMULATE, NULL)) == NULL) {
 fprintf(stderr, "Failed spe_context_create(errno=%d)\n", errno);
 if(errno == ENODEV) {
 perror("Failed creating context, requires an SPE enabled for isolation
mode");
 } else {
 perror("Failed creating context");
 }
 exit(1);
 }

 /* Load program */
 if ((rc = spe_program_load(data.spe_id, &hello_spu)) != 0) {
 fprintf(stderr, "Failed spe_program_load(errno=%d)\n", errno);
 perror("Failed loading program");

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 “Hello, World!” Programming Example

9/18/2007 Page 31 of 44

 exit(1);
 }

 /* Initialize data */
 data.entry = SPE_DEFAULT_ENTRY;
 data.flags = 0;
 data.argp = NULL;
 data.envp = NULL;

 /* Create thread */
 if ((rc = pthread_create(&data.pthread, NULL, &ppu_pthread_function, &data)) != 0)
{
 fprintf(stderr, "Failed pthread_create(errno=%d)\n", errno);
 perror("Failed creating thread");
 exit(1);
 }

 /* Wait for SPU-thread to complete execution. */
 /* Join thread */
 if ((rc = pthread_join (data.pthread, NULL)) != 0) {
 fprintf(stderr, "Failed pthread_join(rc=%d, errno=%d\n", rc, errno);
 perror("failed joining thread");
 exit(1);
 }

 /* Destroy context */
 if ((rc = spe_context_destroy (data.spe_id)) != 0) {
 fprintf(stderr, "Failed spe_context_destroy(rc=%d, errno=%d)\n", rc, errno);
 perror("failed destroying thread");
 exit(1);
 }

 /* Check stop reason of the SPE application */
 if (data.stopinfo.stop_reason == SPE_EXIT) {
 printf("spe thread has exited(stopinfo.spe_exit_code=%d)\n",
data.stopinfo.result.spe_exit_code);
 return (data.stopinfo.result.spe_exit_code);
 } else {
 fprintf(stderr, "stopinfo.stop_reason=%x, stopinfo.spe_exit_code=%x \n",
data.stopinfo.stop_reason, data.stopinfo.result.spe_exit_code);
 return -1;
 }
}

The Makefile for the PPE application follows:

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

“Hello, World!” Programming Example Version 3.01

Page 32 of 44 9/18/2007

Subdirectories
DIRS := spu

Target
PROGRAM_ppu := iso_simple

Local Defines
IMPORTS := spu/lib_hello_spu.a -lspe2

INSTALL_DIR = $(SDKPRBIN_ppu)/examples
INSTALL_FILES = $(PROGRAM_ppu)

make.footer
include $(CELL_TOP)/buildutils/make.footer

The Makefile for the PPE application is almost exactly what would be prepared for a non-isolated SPU
application.

7.3 Building the Sample Application

First, define the following environment variable.
export CELL_TOP=/opt/cell/sdk

Then build your application using:
make

This creates the SPU application, converts it to the SPU memory image and signs it, and then creates
the PPU executable, iso_simple, with the SPU application embedded.

7.4 Execute the Sample Application

Executing the command:
./iso_simple

will produce the following output:

Isolate Sample: Hello Cell!
spe thread has exited(stopinfo.spe_exit_code=0)

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 API

9/18/2007 Page 33 of 44

8 API

8.1 Data Transfer through Open Area of LS

As described in the Cell/B.E. Security architecture document (see section 1.5 for references), when an
SPU is in hardware isolation mode, there is an open area of LS much like a “window”, whereby an
application can DMA in and out data. The following functions below assist the programmer with this
programming model. The copyin/copyout functions allow user to transfer data between main memory
and LS via the open area. The decrypt_in and encrypt_out functions are based on copyin/copyout but
additionally, applies an XOR mask to the data to mimic encryption.

There is no need for programmers who intend to only use the emulated isolation mode to use these
functions. They are only for programmers who eventually want to move up to using the hardware
isolation mode.

8.1.1 copyin – Data Transfer Utility Functions

C specification
#include <libisolation.h>

int copyin(uint64_t ea, void *ls, uint32_t size)

Description
The copyin subroutine copies data from the main memory into the LS. ea and ls must be 16-byte
aligned, and size must be a multiple of 16 bytes.. If all data are successfully transferred to the LS,
this subroutine returns success (value 0). Otherwise, it returns an error (-1).

Dependencies
None.

See also
copyout

8.1.2 copyout – Data Transfer Utility Functions

C specification
#include <libisolation.h>

int copyout(uint64_t ea, void *ls, uint32_t size)

Description
The copyout subroutine copies data out from the LS to the main memory. ea and ls must be 16-
byte aligned, and size must be a multiple of 16 bytes. If all data are successfully transferred to the
main memory, this subroutine returns success (value 0). Otherwise, it returns an error (-1).

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

API Version 3.01

Page 34 of 44 9/18/2007

Dependencies
None.

See also
copyin

8.1.3 decrypt_in – Data Transfer Utility Functions

C specification
#include <libisolation.h>

int decrypt_in(void *dst_ls, const uint64_t ea, const uint32_t message_size,
const vector unsigned char shared_key)

Description
The decrypt_in subroutine copies the message on ea into dst_ls, and XOR’es the message at dst_ls
with a library static mask. The XOR’ed results are stored in dst_ls. ea and dst_ls must be 16-byte
aligned, and message_size must be a multiple of 16 bytes. shared_key is ignored in this release. If
all data are correctly XOR’ed into the LS, it returns success (0). Otherwise, this subroutine returns
errors.

Dependencies
copyin

See also
encrypt_out

8.1.4 encrypt_out – Data Transfer Utility Functions

C specification
#include <libisolation.h>

int encrypt_out(const uint64_t ea, void *src_ls, const uint32_t
message_size, const vector unsigned char shared_key)

Description
The encrypt_out subroutine XOR’es the message at src_ls with a library static mask and copies
the XOR’ed message to ea. ea and src_ls must be 16-byte aligned, and message_size must be a
multiple of 16 bytes. shared_key is ignored in this release. If all data are correctly XOR’ed and
copied out from the LS, it returns success (0). Otherwise, this subroutine returns errors.

Dependencies
copyout

See also
decrypt_in

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 API

9/18/2007 Page 35 of 44

8.2 Secure File Storage

The Secure File Storage APIs provide a facility for reading and writing sensitive information to an
encrypted file, with the added function that the content is verified after reading, so that any tampering
is detected. The Secure File Storage API’s mirror fopen and fread/fwrite for file streams, but with a
slightly more limited set of semantics; in particular, not all of the file api’s are supported for the
encrypted files.

When a secure file is created or opened, an encryption key is provided. Files may be shared between
applications by sharing the encryption key. If the file is not to be shared, then the encryption key must
be kept secret; this may be best done by encrypting the key as part of the encrypted section of the
secure SPE application.

8.2.1 SFS_FILE * – Pointer to Secure File Storage file structure

C specification
#include <libisolation.h>

SFS_FILE *sfs_file_var;

Description
The SFS_FILE * pointer is the Secure File Storage analog of the FILE * for file I/O. It references
a structure that is allocated, maintained, and freed by the Secure File Storage api’s, and it contains
all of the information necessary to access the Secure File Storage.

Dependencies
None.

See also
None.

8.2.2 sfs_fopen – Create or open a Secure File Storage file

C specification
#include <libisolation.h>

SFS_FILE *sfs_fopen(char *filename, char *mode,
const vector unsigned char key);

Description
sfs_fopen creates or opens the Secure File Storage file associated with the string filename, and
associates a stream, referenced by the SFS_FILE structure, with the file.

The argument mode is interpreted as if for an fopen call to stdio; it must point to a string
beginning with one of the following sequences:

‘r’ Open the file for reading. The stream is positioned at the beginning of the file. It is an error
if the file does not exist.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

API Version 3.01

Page 36 of 44 9/18/2007

‘r+’ Open the file for reading and writing. The stream is positioned at the beginning of the file. It
is an error if the file does not exist.

‘w’ Open the file for writing. Truncate an existing file or create a new file. The stream is
positioned at the beginning of the file.

‘w+’ Open the file for writing and reading. Truncate an existing file or create a new file. The
stream is positioned at the beginning of the file.

‘a’ Open the file for writing. The file is created if it does not exist. The stream is positioned at
the end of the file and all writes occur at the end of the file.

‘a+’ Open the file for writing and reading. The file is created if it does not exist. The stream is
positioned at the end of the file and all writes occur at the end of the file.

The argument key points to a vector of unsigned characters which contains the 16 character
encryption key. This key is used for all encryption and decryption of the Secure File Storage.

During the open of the encrypted file, sfs_fopen reads the file header and verification data, and
may write additional verification data. As a result of these operations, sfs_fopen may set errno to
any of the error codes associated with fopen, fread, and fwrite; it may also set errno to EINVAL
if the encryption key can not correctly decrypt the file header, or EIO if the verification data does
not correctly verify.

Dependencies
None.

See also
sfs_fclose.

8.2.3 sfs_fclose – Close a Secure File Storage file

C specification
#include <libisolation.h>

int sfs_fclose(SFS_FILE *stream);

Description
sfs_fclose closes the Secure File Storage associated with stream. If the stream is open for writing,
any buffered data is first written to the file.

sfs_fclose return 0 if successful, EOF otherwise. In either case, no further access to the stream is
allowed.

During this operation, sfs_fclose updates the file header and verification data if the file was open
for writing. As a result of these operations, sfs_fclose may set errno to any of the error codes
associated with fwrite and fclose.

Dependencies
None.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 API

9/18/2007 Page 37 of 44

See also
sfs_fopen.

8.2.4 sfs_fread – Read data from a Secure File Storage file

C specification
#include <libisolation.h>

int sfs_fread(void *buffer, size_t element_size, size_t count,
SFS_FILE *stream);

Description
sfs_fread will read count elements from the stream, each of size element_size, into the memory
referenced by buffer. If less than count elements are remaining in the stream, then fewer bytes
will be returned. If the number of remaining bytes is not a multiple of element_size, then an error
is returned.

Upon successful completion, sfs_fread returns the number of elements of size element_size that
were read and returned. The stream location is incremented by the number of bytes returned.

As part of this operation, sfs_fread reads both the requested data and the associated verification
information. sfs_fread may return with errno set to any of the error codes associated with fread.
In addition, if the verification data does not agree with the computed verification over the
requested data, then sfs_fread returns with errno set to EIO.

Dependencies
None.

See also
sfs_fwrite.

8.2.5 sfs_fwrite – Write data to a Secure File Storage file

C specification
#include <libisolation.h>

int sfs_fwrite(void *buffer, size_t element_size, size_t count,
SFS_FILE *stream);

Description
sfs_fwrite will write count elements to the stream, each of size element_size, from the memory
referenced by buffer.

sfs_fwrite returns the number of elements written. If the return value is less than count, then a
write error occurred.

During this operation, sfs_fwrite writes the data to the encrypted file and computes the new
verification data. As a result of these operations, sfs_fwrite may set errno to any of the error
codes associated with fwrite.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

API Version 3.01

Page 38 of 44 9/18/2007

Dependencies
None.

See also
sfs_fread.

8.2.6 sfs_fseek – Set the current position for a Secure File Storage file

C specification
#include <libisolation.h>

int sfs_fseek(SFS_FILE *stream, long int offset, int wherefrom);

Description
sfs_fseek sets the current stream location to that specified by offset. The interpretation of offset is
determined by wherefrom.

SEEK_SET Interpret offset as an absolute offset from the start of the file.

SEEK_CUR Interpret offset as a relative offset from the current stream location.

SEEK_END Interpret offset as a relative offset from the stream position immediately
following the last data byte in the file.

If successful, sfs_fseek return 0; otherwise, sfs_fseek returns -1. sfs_fseek may return with errno
set to any of the error codes associated with fseek.

Dependencies
None.

See also
sfs_ftell.

8.2.7 sfs_ftell – Return the current position for a Secure File Storage file

C specification
#include <libisolation.h>

int sfs_ftell(SFS_FILE *stream);

Description
sfs_ftell returns the current position offset within the stream.

If successful, sfs_ftell returns 0 or a positive value; otherwise, sfs_ftell returns -1. sfs_ftell may
return with errno set to any of the error codes associated with ftell.

Dependencies
None.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 API

9/18/2007 Page 39 of 44

See also
sfs_fseek.

8.3 PPE-Assisted Functions

PPE-serviced SPE C library functions are described in chapter 4.1 of “Cell Broadband Engine SDK
Libraries Overview and Users Guide”. However, the implementation does not operate as described
when the application is executing in the isolation mode due to environment differences. Analogous
replacement functions for the SPE functions are provided in libisolation.a, which work around
these differences and provide equivalent function. Note that restrictions described in this section apply
only to PPE-serviced C library functions; SPE-serviced C library functions operate as normal.

The replacement functions make use of an auxiliary buffer, which is located in the area of LS reserved
for system use (LS address range 0x3E000-0x3E0C0). The size of auxiliary buffer is initially 192
bytes, but the size may be changed using the change_ppuassist_buf_len function (see section8.3.1).
Buffer size can be set to no more than 8016 bytes, thus placing a limit on the combined size of function
parameters. This implies, for example, that it is not possible to fread()/fwrite() more than ~7900 bytes
at a time, and it is not possible to printf more than ~7900 bytes of data at a time.

The size of auxiliary buffer must be at least as large as the sum of the following:

1. 16 bytes,

2. 16 bytes for each function parameter,

3. for each string, array, or struct referenced, the size in bytes of the referenced item rounded up to
the next multiple of 16 bytes, and

4. for printf, fprintf, vprintf, and vfprintf, an additional 32 bytes.

For example, consider the function call,
printf(“This is a %s call with %d parameters.\n”, “PPE-assisted call”,

(int) 3);

This call has 3 parameters: two strings and one integer. The format string requires 48 bytes and the
parameter string requires 32 bytes. An additional 32 bytes are required for the printf function. The total
buffer size required for the call is

size of auxiliary buffer = 16 + 3*16 + (48 + 32) + 32 = 176 bytes

If size of auxiliary buffer was set to an insufficient value, PPE-assisted call will terminate early, with
errno variable set to ENOBUFS.

Developers must ensure that, when invoking such a PPE-assisted call, they have no outstanding DMAs
with their source and/or destination overlapping with auxiliary buffer, to avoid incorrect execution of
PPE-assisted call and/or DMA.

PPE-assisted functions that are unsupported in emulated isolation mode will produce a missing link
error at application build time, by using stubs which link to a non-existent function.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

API Version 3.01

Page 40 of 44 9/18/2007

To use PPE-serviced calls in emulated isolation mode, libisolation.a must be linked after libc.a and
libgloss.a, but only after defining the symbol __send_to_ppe as being wrapped (redefined to
__wrap___send_to_ppe) at link time. Including make.iso.footer in the Makefile will resolve the correct
linkage steps.

8.3.1 change_ppuassist_buf_len – PPE Assisted Functions

C specification
#include <libisolation.h>

int change_ppuassist_buf_len(unsigned int new_len)

Description
The change_ppuassist_buf_len function sets the size of the buffer area to be used for PPE-
assisted functions. These are the functions that require assistance from code that executes on the
PPE. Parameters to the PPE code are passed using a buffer in the area of LS reserved for system
use (LS address range 0x3E000-0x3E0C0), and results are returned using the same buffer. Since
this buffer competes with other uses for this reserved area of LS, this function can be used to set
the size of the buffer smaller when not needed, or larger for larger parameters (e.g., large strings).
Please see section 8.3 “PPE-Assisted Functions” for more details.

Minimal and maximal sizes buffer can be set to are 80 and 8016 bytes, respectively. Value of 0 is
returned on successful change, or -1 is returned on failure.

Dependencies
None.

See also
None.

8.3.2 Unsupported libc.a Functions

The following PPE-assisted functions from libc.a are not supported in isolation mode:
gets

fscanf

scanf

setbuf

setvbuf

snprintf

sprintf

sscanf

tmpnam

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 API

9/18/2007 Page 41 of 44

vfscanf

vscanf

vsnprintf

vsprintf

vsscanf

system

8.3.3 Unsupported libgloss.a Functions

The following PPE-assisted functions from libgloss.a are not supported in isolation mode:
ftok_ea

mmap_ea

mremap_ea

msync_ea

munmap_ea

shmat_ea

shmctl_ea

shmdt_ea

shmget_ea

shm_open

shm_unlink

mktemp

utimes

readv

writev

8.3.4 Unsupported libea.a Functions

EA functionality is not supported in this release.

8.3.5 Limited Support libc.a Functions

The following PPE-assisted functions from libc.a have limited support in isolation mode. This support
is limited as the types of arguments are determined by scanning the format string; if the format string is
wrong or does not match the argument types, then it is possible to leak information.

fprintf

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

API Version 3.01

Page 42 of 44 9/18/2007

printf

vfprintf

vprintf

Additional limitation is that conversion character '%n' is not supported. This is the conversion
character that makes *printf functions write back number of characters written so far into original
parameter list.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

Version 3.01 SDK Programming Examples

9/18/2007 Page 43 of 44

9 SDK Programming Examples

The source code and Makefile’s for the samples associated with the Cell/B.E. Security SDK are
installed into the /opt/cell/sdk/prototype/src/examples/isolation directory. Each of the
samples has an associated README file. There is also a top-level README in the
src/samples/isolation directory introducing the structure of the sample code source tree. In
addition, there are a number of useful PDF documents in the /opt/cell/sdk/docs directory including
a programming tutorial.

Code specific to a given Cell/B.E. processor unit type is in a corresponding place within a given
sample's directory:

• sample’s directory for code compiled for execution on the PPE

• spu/ subdirectory for code compiled for execution on an SPE

9.1 Changing the default compiler

In the /opt/cell/sdk/buildutils are some top level makefiles that control the build environment
for all of the samples, and make.iso.footer, that controls the build environment for the emulated
isolated SPU. The Cell/B.E. Security SDK samples are built using
/opt/cell/sdk/prototype/src/examples/isolation/Makefile; these samples are not built using
any makefile present above this directory (except make.iso.footer). All of the samples have their
own makefile but the common definitions are in the top level makefiles. The build environment
makefiles are documented in /opt/cell/sdk/README_build_env.txt

Environment variables in the /opt/cell/sdk/buildutils/make.env makefile are used to determine
which compiler is used to build the samples.

9.2 System root directory (for simulator users only)

Building the libraries and samples copies output files into a special directory named
/opt/cell/sysroot. This directory has a very similar structure to a normal system root directory (that
is, /) and contains the usual subdirectories such as /bin, /usr and /etc. Compiled binaries of
examples are deployed into directory
/opt/cell/sysroot/opt/cell/sdk/prototype/usr/bin/examples.

After logging on as root this sysroot directory can be synched up with the simulator sysroot image
file using the install script with the synch task. The command is

/opt/cell/cellsdk_sync_simulator

and is useful whenever a library or sample has been recompiled. This script reduces user error by
providing a standard mechanism to mount the system root image, sync the contents of the two
corresponding directories, and unmounting the system root image.

Cell/B.E. Security SDK Installation and User's Guide

Cell Broadband Engine

 Version 3.01

Page 44 of 44 9/18/2007

9.3 File I/O Programming Example

This example demonstrates how an SPU program can perform file operations (i.e. creation, reading,
updating, deletion) using either POSIX or C99 functions. It is described in the code for the iso_fileio
sample provided as part of the SDK in the directory
/opt/cell/sdk/prototype/src/examples/isolation/iso_fileio

9.4 Copying Encrypted Data Example

This example demonstrates how to utilize the system memory as a secure shared buffer. The SPU
application encrypts a plaintext in LS, and copies out the ciphertext to the system memory. It also
shows 'decrypt_in' usage where the SPU application copies the cipher text from the system memory
back into the LS, and decrypts it. Code for this sample is located under
/opt/cell/sdk/prototype/src/examples/isolation/iso_enccopy

9.5 Copying Encrypted Data with Replay Protection Example

This example is a more advanced version of the previous one, it utilizes the nonce to prevent replay
attacks on the data copied out. Code for this sample is located under directory
/opt/cell/sdk/prototype/src/examples/isolation/iso_enccopy2

9.6 Encrypted SPU Application Example

This sample demonstrates a fully encrypted SPU program. It utilizes additional variables in the
spu/Makefile:

ISO_ENCRYPT_SEC := ALL
ISO_KERN_KEY = /etc/pki/cell-spu-isolation/loader/loader.app_encrypt_key.public.pem

Variable ISO_ENCRYPT_SEC specifies which sections of SPU program image to encrypt, and can be set to
ALL or .text. Variable ISO_KERN_KEY specifies the public key to which SPU program image is
encrypted.

Code for this sample is located under directory
/opt/cell/sdk/prototype/src/examples/isolation/iso_encrypted

Please note that with the publicly available Security SDK, cryptographic encryption is not being used
and thus the key is ignored by the SPE Secure Application build tool which simply XORs the
application image with a static value. In the CDA version of the SDK, cryptographic encryption is
used and the ISO_KERN_KEY is used in the process.

