CPC(1)

NAME

CPC(1)

cpc — The Cell-Perf-Counter tool

SYNOPSIS

cpc [options] [workload]

DESCRIPTION

The cpc tool is used for setting up and using the hardware performance counters in the Cell Broadband En-
gine processofThese counters alloa user to see he mary times certain hardwarevents are occurring,
which is useful while analyzing the performance of software running on a Cell system.

CPC has tw basic modes of operation. The first isnkload mode, which allows the user to specify anoth-

er program to run while the counters are\&ctCPC sets up the desireslents, starts the counters, then

runs the specified program. When therldoad is complete, cpc stops the counters, reads and displays the
counter values, and resets the performance monitoring unit. In this mode the counters will only run on the
CPU where the workload is running, and only while the workload igeadthis provides a very accurate

view of the performance of that single process.

The second mode is system-wide mode. In this mode, the user specifiemtheard options, along with

an optional set of CPUs and time durati@pc starts the counters on all specified CPUs and lets them run
for the specified amount of time. If no time isai, cpc will run the counters until an EOF (control-d) is
recevved. The counters will monitor all processes running on all specified CPUs, and display the results af-
ter the counters a been stopped.

OPTIONS

Linux

The following options can be used with cpc:

-h, --help
Display this summary of options.

-v, --verbose
Verbose output.

-V, --version
Display the version number of this tool.

Specifying Events B Count

-l, --list-events
Display all aailable events.

-e, --avents EVENT,EVENT,...
Comma-separated list of@nts to count. Eents can be specified using their name or nun3aer
--list-events for a full listing of available events. Thereare four countersvailable, and eents are
assigned to counters in the order thaytire specified. @ ip a counterleave it blank (two con-
secutve @mmas).

The counters and list ovents are reset before loading this list véms. Ary events specified on
a previous run of cpc are deleted.

Multiple --events options can begin. Each one is treated as a separatenteset” and all eent-

2007-06-01 1

CPC(1) CPC(1)

sets are loaded into the kernel. Therlel will run each one for a specific amount of time (kmo
as the "switch-timeout") and then rotate to the next set in round-robin aiftkarrunning the last
set, it rotates back to the first set again and continues the loop. The switch-timeout ean ae gi
a per-set basis along with the specification eéds, or a global switch-timeout value can beegi
with the --switch-timeout option.

Each EVENT specification should be in the form:0
[-+]<name|number>[.<C|E>][:subunit][=initial_value]

Events are counted either in cycles or edges. entehat is counted in cycles will\g the num-
ber of cycles that elapsed while theert was occurring. Anwent that is counted in edges will
give the number of times that theeat occurred, rgardless of hav long it took for it to occur.

By default, an eent is counted on ¥ "positive polarity”. By prefixing the eent name/number
with a hyphen, thevent will be counted on it "negative mlarity". For cycle-countingwents, this
means the counter will increment foveey cycle when theent is *not* occurring. For edge-
counting &ents, this means the counter will increment *after* theneé has completed, instead of
immediately upon thevent occurring.

While most gents are counted only in cycles or only edges, soraste allav the user to decide

which way to count. In these cases, the count type is specified by appending a ".C" or a ".E" to the
event number or name. Theents that allav this choice are shown with the appended ".C" or ".E"

in the list displayed with thelist-events option. Thedefault is ".C".

When counting anwvent in the SPU or MFC groups, the desired SPU/MFC (subunit) number is
given by aiffixing the eent name/number with a colon and the SPU/MFC nunibeo number is
given, it defaults to 0. The subunit number is ignored for otliemtegroups.

The counters are initialized to 0 unless an initial valuevsngwith "=VALUE" after the eent
number or name.

To oount all clock cycles without gard to events, specify eent "C".

To count events on the external triggespecify event "Ext". This can also be prefixed with "+" or
"-" to indicate the desired polarjtend sufixed with ".C" or ".E" to indicate whether cycles or
edges should be counted.

To ecify a switch-timeout for an individuavent-set, add:

J{switch_timeout_wlue} to the end of the list ofvents. See the information for the --switch-
timeout option for allevable timeout @alues. If no timeout value is\gh for an @ent-set, the glob-
al value gven by the --switch-timeout option is used.

Events are grouped together according to logic units within the Cell proc&3sPMU can only
count &ents for up to tw groups at once, but can countyalumber of gents within a group (up
to the number of counters). Use thiist-events option to get a list of allvents and which groups
they belong to. Counting the sameeat for two different SPUs/MFCs counts asawdifferent
groups.

Due to hardware limitations, not all combinations wérgs can be counted at the same time. Use
the --query option to verify whether a particular combination @id without actually counting
anything.

Example:
--events 2104=501,-IL1_Miss_Cycles t1.E,C,4104:2=344

Linux 2007-06-01 2

CPC(1) CPC(1)

Counter 0 countsvent 2104, beginning
with an initial value of 501.

Counter 1 counts the IL1_Miss_Cycles_terd
(number 2123) with rgetive polarity and an
initial value of zero. It counts the number

of events that occur (instead of the number of
cycles elapsed while thevent is occurring).

Counter 2 counts all processor cycles.

Counter 4 countsvent 4104 for SPU 2,
beginning with an initial value of 344.

-S, --switch-timeout TIME
Global timeout glue for switching eent-sets in the kernel. If a timeout value is nategifor an
individual esent-set, this value is used. Suffix the value with 'n’ for nanoseconds, 'u’ for microsec-
onds, 'm’ for milliseconds, ors’ for seconds. If no suffix is ggn, the value is in milliseconds.
The default timeoutalue is 50 milliseconds. This option only applies if multipkerg-sets are
specified - no switching occurs if only ongset-set is used.

-c, --cpus CPUS
Monitor the specified physical CPUs (CBE nodes) in system wide mode instead of monitoring a
single workload. 'CPUS’ can be ’all’ to monitor allalable CPUs, or it can be a comma-seperat-
ed list of physical CPUs. This option only applies if a workload is not specified.

Note that this option takes *physical* CPU numbers, since there is only one PMUys&raph
CPU. Each physical CPU hasawardware threads, and each of these threads is reported by Linux
as a separate logical procesdora dual-CPU system, pisical CPU 0 will contain logical CPUs 0
and 1, and physical CPU 1 will contain logical CPUs 2 and 3.

-t, --time TIME
Monitor the CPUs (specified with the --cpus option) in system-wide mode for the specified num-
ber of seconds. If --cpus isvgn, but --time isn’t, the tool will start monitoring and wait until an
EOF (control-D) is receed. This option only applies in system-wide monitoring mode - it is ig-
nored when monitoring a specific workload.

-m, --mode MODE
Count only when in specified MODE:
a oount in all modes
s oount in supervisor (kernel) mode
p count in problem (user) mode
h count in hypervisor mode
k alternate for s
u dternate for p
y dternate for h

Miscellaneous Actions

Linux 2007-06-01 3

CPC(1) CPC(1)

-q, --query
Query to see if anvent combination is valid without performingyagections.

--single-threaded
Don’'t use multiple threads for running the Perfmon2 system-calls in parallel to all the CPUs.
Make the system-calls sequentially from the main cpc process. This should only be necessary for
debugging the Perfmon2 kernel\i.

Output Formatting Options

-0, --output filename
Write the normal text output to the specified file instead of to the screen.

-H, --html filename
Write output in HTML format to the specified file. If --listamts is also gien, the output file will
contain an HTML version of thevent list.

--xml filename
Write output in XML format to the specified file. If --listnts is also gien, the output file will
contain an XML version of thevent list.

-X, --hex
Display counter values in hexidecimal.

--hw-signal-names
Display hardware signal names instead of deseamient names.

Hardwar e Sampling Options

-i, --interval INTERVAL
Sampling INTER/AL. Suffix the value with 'n’ for nanoseconds, 'u’ for microseconds, or 'm’ for
milliseconds. If no suffix is gen, the value is in core clock cycles. The minimuatue is 10 g-
cles or 4 nanoseconds. The counters are reset at ghening of each interval. If this option is
specified, the sampling data will be stored in the hardware tr#s-bnd the sampling mode will
default to "count” (unlesssampling-modeoption specifies an alternate mode).

--sampling-mode TYPE
Indicates the TYPE of data stored to the sampliuifeb If "none", the counters contain data for
the entire duration of the workload. If the "--interval" option is specified, the default is "count".
none Storeno data. (default)
count Storecounter values.
occurrence Storeccurrence data.
threshold Stor¢hreshold data.

--sampling-buffer-size SIZE_FACTOR
Multiple of the hardware trace-bffer size to use for the in-kernel samplingffier. The hardvare
trace-bufer is 16 kB, and the default SIZEAETOR value is 10, which ges a dfault kernel
sampling-buffer size of 160 kB.

Linux 2007-06-01 4

CPC(1) CPC(1)

--thermal-data
Collect thermal data in the samplingfter. This option cannot be used with occurrence or thresh-
old sampling. It also cannot be used when using counterothree. This option can also be
used without giving a set ofients to count.

--overwrite-samples
Overwrite the hardware sampling data when thfdp fulls up. Only the data from the most recent
1024 samples will bevailable.

--ppu-branch-trace HW_THREADS
Enable PPU branch address tracing for the specified hardware threads on all CPUs that are being
monitored. 'HW_THREADS’ can be 'all’ to monitor all hardware threads, or it can be a comma-
seperated list of hardwe threads. This option requires that one of the hardware-sampling modes
be enabled. Counter 0 cannot be used with this option.

--ppu-bookmark-trace HW_THREADS
Enable PPU bookmark tracing for the specified haréwhreads on all CPUs that are being moni-
tored. 'HW_THREADS’ can be 'all’ to monitor all hardwe threads, or it can be a comma-seper
ated list of hardware threads. This option requires that one of the hardware-sampling modes be en-
abled. Counter 0 cannot be used with this option.

Start/Stop Qualifier Options

--start-on-ctrO N
Start counters when counter 0 has counted Mdhts. Counter 4 cannot be used with this option
enabled, unlessstop-on-ctr4is also used. "N" must be limited to a 16-bit value.

--stop-on-ctr4 N
Stop counters when counter 4 has counted dhis. Counter O cannot be used with this option
enabled, unlessstop-on-ctrOis also used. "N" must be limited to a 16-bit value.

--start-on-trigger0
Start counters upon debug bus trigger O.

--start-on-triggerl
Start counters upon debug bus trigger 1.

--start-on-trigger2
Start counters upon debug bus trigger 2.

--start-on-trigger3
Start counters upon debug bus trigger 3.

--stop-on-trigger0
Stop counters upon debug bus trigger 0.

--stop-on-triggerl
Stop counters upon debug bus trigger 1.

Linux 2007-06-01 5

CPC(1)

CPC(1)

--stop-on-trigger2
Stop counters upon debug bus trigger 2.

--stop-on-trigger3
Stop counters upon debug bus trigger 3.

--start-on-ppu-spr-triggerl
Start counters upon PPU SPR trigger 1.

--Stop-on-ppu-spr-trigger2
Stop counters upon PPU SPR trigger 2.

--start-on-eventl
Start counters upon debug buer 1.

--Sstop-on-event2
Stop counters upon debug buerd 2.

--start-on-ppu-th0-bookmark
Start counters upon PPU hardware-thread 0 bookmark start.

--start-on-ppu-th1-bookmark
Start counters upon PPU hardware-thread 1 bookmark start.

--stop-on-ppu-th0-bookmark
Stop counters upon PPU hardware-thread 0 bookmark stop.

--stop-on-ppu-th1-bookmark
Stop counters upon PPU hardware-thread 1 bookmark stop.

--restart-enable
Allows prequalifier start after prequalifier stop.

Workload
Program and arguments t@eeute while countingwents. The --cpus and --time options are ig-
nored if a workload is specified.

If no workload is specified and the --cpus option is neémgiall CPUs will be monitored in sys-
tem-wide mode. Additional)yif the --time option is not gen, the tool will start monitoring and
wait until control-D (EOF) is receed.

HARDWARE SAMPLING

Linux

The Cell PMU provides a mechanism for the haawto periodically read the counters and store the re-
sults in a hardwareuffer. This allows the cpc tool to collect a large number of counter samples while great-
ly reducing the number of calls that cpc has to enato the kernel.

Use the--interval option to specify the length of the sampling period, in time or in clgcles. In most
cases, the counters should be initialized to zero, singeatbeall reset to their initial value at the end of

2007-06-01 6

CPC(1) CPC(1)

each sampling period. As it runs and monitors the workload or the system, cpc periodically reads the con-
tents of the in-kernel samplings#ber. Information for all accumulated samples is displayed after menitor
ing is complete.

In addition to simply sampling the counters, the Cell PMU provides a variety of other sampling modes.

Occurrence sampling(--sampling-mode occurenceg monitors up to 64\eents at once. Each sample con-
tains one bit for eachvent, indicating whether thevent occurred at least once during that inénAll of

the events in an eent-group are monitored, and up toawgroups can be monitored at once. Use the
--events option to specify anevent in the group(s) to be sampled.

Threshold sampling(--sampling-mode threshold monitors the counters, and records one bit for each ac-
tive ounter that indicates whether the associateshiteoccurred at least some specified humber of times
(the "threshold"). For this to be useful, theer@s need to be initialized to the desired "thresholdUe. If

no initial value is gien for an @ent, a threshold of zero is used, which means thattewill always hit its
threshold.

Thermal sampling (--thermal-data) collects information about the temperature erigus areas of the

Cell processorThe PPU and all eight SPUs contain temperature sensors, analube of these sensors

can be routed to the samplingfter. This option cannot be used with occurrence or threshold sampling,
since the data is stored in the same place in the sampiffeg-bTrhis option can be used with regular count
sampling, but cannot be used when counters 2, 3, 6, or 7 are enabled. This option can also be used by itself,
without loading ay other e/ents to count.

Partial samples

When cpc is running in one of the hardware-sampling modgsekeents can occur that may disrupt the
collection of a sample. These kerngba include context-switching the workload process that is being
monitored, switchingent-sets (if multiple sets ofvents are gren), and handling PMU interruptdVhen

one of these occuthe hardvare may be part-way through collecting the current samplevet#n, the
hardware sampling-bffer cannot be restored to a previous state, soehaek must record the data that is
available for that fraction of a sample. When the PMU is enabled again, it will start collectimgsame

ple.

In regular counter-sampling mode, the kernel has access to theaharclunters that are being sampled,
so the intermediate counteslues can be copied into the samplindfdr. In the cpc output, these samples
will indicate they are only partially complete, andwgi the percentage of the int@ihat was completed be-
fore it was interrupted.

However, in occurrence, threshold and thermal sampling modes, ¢heek does not lve access to the
hardware where the intermediate values are stored during eachaintenthese cases, the cpc output will
shaw all zero data for that sample, and will mark the line as incomplete.

PPU branch-address tracing

CPC provides the ability toagher a trace of certain branch addresses that occur on the PPU. In particular
the bclr(l), becetr(l), and rfid instructions, which are generally used for subroutine return, can be traced for
either or both of the PPU hardve-threads. Use the --ppu-branch-trace option to enable this feature, and
specify the list of hardware-threads that should be monitored, or 'all’ to monitor all hardware-threads.

This feature can be used by itself, or in addition tp @ithe other hardware- sampling modes. If this is

used with ap other hardware-sampling mode, the PPU branch addresses will be interspersed with the
counter sampling data.

Linux 2007-06-01 7

CPC(1) CPC(1)

PPU bookmark tracing

In addition to tracing branch addresses, CPC can generate traces for writes to the PPU bookmark special-
purpose registers. When the --ppu-bookmark-trace option is used|wdbwnritten to the bookmarkgis-

ter will be copied into the samplingiffer. Just like branch-address tracing, bookmark tracing can be used

at the same time as one of the hadwsampling modes, and the bookmark values will be interspersed
with the counter sampling data.

From the command line, to write to the bookmark register for the fiysigdd CPU, echo the desiredlve

into the /sys/devices/system/cpu/cpu0/pmu_bookmark file. For the secgeitgbhCPU, use the file
/sys/deices/system/cpu/cpu2/pmu_bookmark. These files can also ben written to from within another pro-
gram by using open() and write(). Wever, the \alue written to the file must be an ASCII string of the de-
sired value, not the actual numerical value.

Hardware-sampling kernel module

In order to use anof these hardare sampling options, theerfmon_cell_hw_smplkernel module must

be loaded. If cpc is running as root, it will automatically load this module if itaeady loaded. If cpc is
running as a non-root useéhe module must already be loaded. On Redhat and Fedora-based systems, the
module can be autoloaded at boot-time by adding théefitdésysconfig/modules/perfmon.modulesvith

execute permissions, containing the followingotlines:

#!/bin/sh
modprobe perfmon_cell_hw_smpl > /dev/null 2>&1

START/STOP QUALIFIERS
CPC provides seral options for starting and/or stopping the counters after some condition has occurred.
When a --start-on options is used, the counters will not actually begin counting until the redateace
curs. When a --stop-on options is used, the counters will stop once the resmtieaceurs.

Start on counter 0 and stop on counter 4

CPC prwides options to start and stop the counters when a certain number of countatdehare oc-

curred. In order to use this feature, specify the --start-on-ctrO and/or --stop-on-ctr4 option. Each of these op-
tions takes an gument which is the number ofemts to count before starting/stopping the counters. When
either of these options are used, the other counter (0 or 4) cannot be used as a regulaBotiuntem-

ters can be used if both --start-on-ctrO and --stop-on-ctr4 are used. In addition, the argument to these op-
tions must be limited to a 16-bit value (less than 65536).

Start/stop on PPU bookmark writes

CPC provides options to start and stop the counters wereaealue is written to one of the PPU book-
mark registers. Each physical Cell CPU has tagical CPUs (a.k.a. hardwe threads), and each logical
CPU has its own bookmarkgister If the --start-on-ppu-thO-bookmark option is used, writes to the first
hardware thread on gnmonitored plysical CPU will start the counters. If the --start-on-ppu-th1-bookmark
option is used, writes to the second hardware threadyomanitored plysical CPU will start the counters.

The semantics are the same for the --stop-on-ppu-th0-bookmark and --stop-on-ppu-th1-bookmark options.

To write to the bookmark gaster, use the files /sys/devices/system/cpu/cpuX/pmu_bookmark, where "X’ is
the logical CPU numbeLogical CPUs 0 and 1 are thed\wardware threads on physical CPU 0, and logi-
cal CPUs 2 and 3 are thedwardware threads on piical CPU 1. From the command line, echo a decimal
value into the file to write to the bookmarkgister These files can also be written to from within another
program by using open() and write(). Mever, the value written to the file must be an ASCII string of the

Linux 2007-06-01 8

CPC(1) CPC(1)

desired value, not the actual numerical value.

Specific values must be written to the bookmadister in order to start and/or stop the counteesgdrt
the counters, use the value 2763, or 9223372036854 7758080 the counters, use the value 2762, or
4611686018427387904.

Start/stop qualifier restrictions

The start/stop qualifiers go into effect each time the PMU is enabledbvEpin order to support features
like per-process monitoring, multiplevent-sets, hardware-sampling and 64-bit virtual counters, ¢neek
frequently disables and re-enables the PMbt. &le, when a monitored process is context switched
out, the PMU is disabled and the PMU state \&@d# the process context. When that monitored process is
scheduled on the CPU &g, the PMU state is reloaded and the PMU is enabled agaieveipthe PMU
treats that as a wholewenonitoring session with gard to the start/stop qualifiers, instead of a continua-
tion of a previous session. Even if a start/stop qualifier had been triggevéoluphe it will wait for that
qualifier to occur again before the counters actually start.

Therefore, all the start/stop qualifier options are only supported in system- wide mode, with avsirtgle e
set, and without anhardware-sampling modesln addition, the 64-bit virtual counters are disabled. If a
counter reaches its maximum value (2°32-1), it will stop counting.

EXAMPLES
Example 1: Workload mode, single gent-set

cpc --events 2104.E,2123.E math_test 1000 100000

Run the program "math_test 1000 100000", and measanése2104 and 2123 (L1 i-cache misses
for hardware threads 0 and 1) while the command is running.

Output:

The cpc output atays starts with a header and a gayg the cpc command that was run. When
running in workload mode, the header info is followed by basic information about dinkdomd

that was monitored. Then the actual results are displayed. In workload mode, there will be one set
of results for eachvent-set gien on he command-line. The results include the values of all the
PMU control registers that were used for thaene-set, followed by data for each hamhe
counter Each counter line shies the count value, the number and name of wieateéhat was as-

signed to that countewhether the eent was counted in \&ents’ (E) or 'cycles’ (C), and which

SPU was monitored (if applicable for thaest).

kkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkk

* Cell Perf-Counter Results *
*khkkkhkkkhkkkhkhhhhhhhkhhhhhkhik

Command: cpc -yents 2104.E,2123.E math_test 1000 100000

Workload
Command: math_te4000 100000
Process ID: 24459
Return value: 0
Started: Te Aug 7 12:40:14 2007
Stopped: Te Aug 7 12:40:17 2007
Duration: 2.9254068econds

Linux 2007-06-01 9

CPC(1)

Linux

CPC(1)

Results For Workload

Event-Set 0

group_control 0x00000000
debug_las_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0xc0000000
pm_control 0x000c0000
pm_intenal 0x00000000
pm_start_stop 0x00000000

pmO_control 0x11400000
pm1_control 0x5d400000

pmO_eent 0x0000000dafff 7c8
pml_eent 0x0000000dafff 7b5

Data Counters

Event Count
Ctr Count Number Type SPU Event Name

0 43754 2104 E IL1_Miss_Cycles_t0
1 30995 2123 E IL1_Miss_Cycles t1

Example 2: System-wide mode, singlevent-set
cpc --events C,2100,2119 --cpus all --time 10s

Measure clock-cycles and branch instructions committed on both &ediweads, for all pro-
cesses on all CPUs for ten seconds.

Output:
In system-wide mode, a set of results is displayed for each physical CPUathgi/en by the

--cpus option, and each of these sets will contain one set of results foveachet. The format
of the results is the same as in workload mode.

kkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkk

* Cell Perf-Counter Results *

kkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkk

Command: cpc -aents C,2100,2119 --cpus all --time 10s

2007-06-01 10

CPC(1)

Linux

Results For Physical CPU 0

Event-Set 0

group_control 0x00000000
debug_las_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0x0000000
pm_control 0x000c0000
pm_intenal 0x00000000
pm_start_stop 0x00000000

pmO_control 0x42c00000
pm1_control 0x01c00000
pm2_control 0x4dc00000

pmO_eent 0x0000000000000000
pml_eent 0x0000000dafff 7cc
pm2_eent 0x0000000dafff 7b9

Data Counters

Event Count
Ctr Count Number Type SPU Event Name

0 32010733502 0C System Clock Cycles
1 2482563 2100 C Branch_Commit_t0
2 1191865 2119 C Branch_Commit_t1

Results For Physical CPU 1

Event-Set 0

group_control 0x00000000
debug_las_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0x0000000

2007-06-01

CPC(1)

11

CPC(1) CPC(1)

pm_control 0x000c0000
pm_intenal 0x00000000
pm_start_stop 0x00000000

pmO_control 0x42c00000
pm1_control 0x01c00000
pm2_control 0x4dc00000

pmO_eent 0x0000000000000000
pml_eent 0x0000000dafff 7cc
pm2_eent 0x0000000dafff 7b9

Data Counters

Event Count
Ctr Count Number Type SPU Event Name
0 32010774708 0C System Clock Cycles
1 1216673 2100 C Branch_Commit_t0
2 1177159 2119 C Branch_Commit_t1

Example 3: Workload mode, multiple eent-sets, additional output formats

cpc --events 2111,2130 -vents 2205,2221 --switch-timeout 100ms \
--output testl.txt --xml test1l.xml --html test1.html \
math_test 1000 100000

Run the "math_test" program, and count PPC instructions committed irvarieset, and L1 d-
cache load misses in a secondn-set. Run eachvent-set for 100 milliseconds before switching

to the other eent-set. Write the text output to the file testl.txt, and generate html and xml outputs
in the files testl.html and testl.xml.

Output:

The output file testl.txt will contain the following text, with one set of results for each of the
evant-sets measured. The testl.html file will contain the results in very similar looking format for
viewing in a web browseend test1l.xml will contain data in a format that can be input into VPA.

kkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkkx

* Cell Perf-Counter Results *
kkhkkkkhkkkhkkkhkhhhhhhhkhhhhhkhik

Command: cpc -aents 2111,2130 -vents 2205,2221 --switch-timeout 100ms --output testl.txt --xml test1.xr

Workload
Command: math_te4000 100000
Process ID: 24838
Return value: 0
Started: Te Aug 7 13:10:18 2007
Stopped: Te Aug 7 13:10:21 2007
Duration: 2.92525%econds

Linux 2007-06-01 12

CPC(1)

Linux

Results For Workload

Event-Set 0

group_control 0x00000000
debug_las_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0xc0000000
pm_control 0x000c0000
pm_intenal 0x00000000
pm_start_stop 0x00000000

pmO_control 0x2dc00000
pm1_control 0x79c00000

pmO_eent 0x0000000afff 7c1
pml_eent 0x0000000dfff 7ae

Data Counters

Event Count

Ctr Count Number Type SPU Event Name

0 1463270 2111 C PPC_Commit_tO
1 334414208 2130 C PPC_Commit_t1

Event-Set 1

group_control 0x00000000
debug_las_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0xc0000000
pm_control 0x000c0000
pm_intenal 0x00000000
pm_start_stop 0x00000000

pmO_control 0x15c00000
pm1_control 0x55c00000

2007-06-01

CPC(1)

13

CPC(1) CPC(1)

pmO_eent 0x00000004afff 763
pml_eent 0x0000000afff 753

Data Counters

Event Count
Ctr Count Number Type SPU Event Name
0 830462939 2205 C DL1_Miss_tO
1 0 2221 C DL1_Miss_tl1

Example 4: Hardware sampling

cpc --events C,2104,2123 --interval 1ms math_test 1000 100000
Run the "math_test" program and collect counter sampkeg & millisecond.
Output:

In all hardware sampling modes, the results for eagmeset include a short table showing which
evants are assigned to each countellowed by a (potentiall very long) table of thevreampling
data. Each counter has one column of data, and eachegns with the sample numbehs ex-
plained in the "Partial Samples" section asome of the lines of data include a note at the end
indicating that the line represents an incomplete sample, aesltgé percentage complete for the
interval. The sampling-liffer header information geés the total number of samples as well as the
number of incomplete samples.

kkkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkk

* Cell Perf-Counter Results *

kkkkkkkkkkkkkkhkkkkkkkkkkhkkkkhkk

Command: cpc -aents C,2104,2123 --interval 1ms math_test 1000 100000

Workload
Command: math_te4000 100000
Process ID: 25216
Return value: 0
Started: Te Aug 7 13:48:36 2007
Stopped: Te Aug 7 13:48:39 2007
Duration: 2.93016%econds

Results For Workload

Event-Set 0

Linux 2007-06-01 14

CPC(1)

Linux

group_control 0x00000000
debug_las_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0x00400000
pm_control 0x500c0000
pm_intenal Oxffcf2bff
pm_start_stop 0x00000000

pmO_control 0x42c00000
pm1_control 0x11c00000
pm2_control 0x5dc00000

pmO_eent 0x0000000000000000
pml_eent 0x0000000dafff 7c8
pm2_eent 0x0000000dafff 7b5

Sampling Buffer

Interval: 3200000 clock cycles
Number of Samples: 2926 (10 incomplete)

Bit Event Count
Ctr Width Number Yype SPU Event Name

0 3R 0 C System Clock Cycles
1 32 204 C IL1_Miss_Cycles_t0
2 3R 2123 C IL1_Miss_Cycles_t1

Sample CtO Cr1 Ctr2

0 1122916 0 316640 (only35.1% complete)
1 692188 0 277432 (only21.6% complete)
2 13850 0 1732 (only0.4% complete)

3 1005070 0 307826 (only31.4% complete)
4 3200000 0 516100

5 3200000 67272 59396

6 3200000 0 0

7 3200000 0 0

8 3200000 0 0

9 3200000 1066 9304

10 3200000 0 0

[example data remead for brevity]

2915 3200000 518 962
2916 3200000 0 0
2917 3200000 0 0
2918 3200000 0 0
2919 3200000 720 572
2920 3200000 0

2921 3200000 0

2922 3200000 0

2007-06-01

CPC(1)

15

CPC(1) CPC(1)

2923 3200000 626 824
2924 2829438 0 460496 (only88.4% complete)
2925 197044 92618 0 (only 6.2% complete)

Example 5: Hardware sampling, threshold mode

cpc --events 2104=100,2123=200 --interval 1ms\
--sampling-mode threshold math_test 1000 100000

Run the "math_test" program and collect threshold sampéeg & millisecond. The threshold for
evant 2104 is 100, and the threshold foemt 2123 is 200.

Output:

In the sampling data results, each sample shows a 1 or O for each counter to indicate whether that
counter exceeded its threshold value during that interval.

kkkkkkkkkkkkkkkhkkkkhkkkkkkhkkkkhkk

* Cell Perf-Counter Results *

kkkkkkkkkkkkkkkhkkkkhkkkkkkhkkkkhkk

Command: cpc -aents 2104=100,2123=200 --interval 1ms --sampling-mode threshold math_test 1000 100

Workload
Command: math_te4000 100000
Process ID: 25323
Return value: 0
Started: Te Aug 7 13:58:18 2007
Stopped: Te Aug 7 13:58:21 2007
Duration: 2.926313econds

Results For Workload

Event-Set 0

group_control 0x00000000
debug_las_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0x00400000
pm_control 0x700c0000
pm_intenal Oxffcf2bff
pm_start_stop 0x00000000

pmO_control 0x11c00000
pm1_control 0x5dc00000

Linux 2007-06-01 16

CPC(1)

Linux

pmO_eent 0x0000000d0fff 7¢8
pml_eent 0x0000000dafff 7b5

Threshold Sampling Buffer

Counters thatwerflowed during the sample interval.

Interval: 3200000 clock cycles
Number of Samples: 2992 (112 incomplete)

Threshold Eent Count
Ctr Value Number Type SPU Event Name

0 100 2104 C IL1_Miss_Cycles_t0
1 200 2123 C IL1_Miss_Cycles_t1

Counters

O0(Incomplete)
O0(Incomplete)
O0(Incomplete)
O0(Incomplete)

[skipped for brevity]

278 0 0
279 11
28010
28110
28210
28311
284 00
28500
286 0 0
28711
288 00
289 00
290 0 0
29111
29200
293 00
294 00
29511
296 0 O
297 00
298 0 0
299 11
300 0 O

2007-06-01

CPC(1)

17

CPC(1)

SEE ALSO
oprofile(1)

AUTHOR
Kevin Corry <kevcorry@us.ibm.com>

Linux

2007-06-01

CPC(1)

18

