
CPC(1) CPC(1)

NAME
cpc − The Cell-Perf-Counter tool

SYNOPSIS
cpc [options] [workload]

DESCRIPTION
The cpc tool is used for setting up and using the hardware performance counters in the Cell Broadband En-
gine processor. These counters allow a user to see how many times certain hardware events are occurring,
which is useful while analyzing the performance of software running on a Cell system.

CPC has two basic modes of operation. The first is workload mode, which allows the user to specify anoth-
er program to run while the counters are active. CPC sets up the desired events, starts the counters, then
runs the specified program. When the workload is complete, cpc stops the counters, reads and displays the
counter values, and resets the performance monitoring unit. In this mode the counters will only run on the
CPU where the workload is running, and only while the workload is active. This provides a very accurate
view of the performance of that single process.

The second mode is system-wide mode. In this mode, the user specifies the events and options, along with
an optional set of CPUs and time duration.Cpc starts the counters on all specified CPUs and lets them run
for the specified amount of time. If no time is given, cpc will run the counters until an EOF (control-d) is
received. The counters will monitor all processes running on all specified CPUs, and display the results af-
ter the counters have been stopped.

OPTIONS
The following options can be used with cpc:

-h, --help
Display this summary of options.

-v, --verbose
Verbose output.

-V, --version
Display the version number of this tool.

Specifying Events To Count

-l, --list-events
Display all available events.

-e, --events EVENT,EVENT,...
Comma-separated list of events to count. Events can be specified using their name or number. See
--list-events for a full listing of available events. Thereare four counters available, and events are
assigned to counters in the order that they are specified. To skip a counter, leave it blank (two con-
secutive commas).

The counters and list of events are reset before loading this list of events. Any events specified on
a previous run of cpc are deleted.

Multiple --events options can be given. Each one is treated as a separate "event-set" and all event-

Linux 2007-06-01 1

CPC(1) CPC(1)

sets are loaded into the kernel. The kernel will run each one for a specific amount of time (known
as the "switch-timeout") and then rotate to the next set in round-robin order. After running the last
set, it rotates back to the first set again and continues the loop. The switch-timeout can be given on
a per-set basis along with the specification of events, or a global switch-timeout value can be given
with the --switch-timeout option.

Each EVENT specification should be in the form:0
[-+]<name|number>[.<C|E>][:subunit][=initial_value]

Events are counted either in cycles or edges. An event that is counted in cycles will give the num-
ber of cycles that elapsed while the event was occurring. An event that is counted in edges will
give the number of times that the event occurred, regardless of how long it took for it to occur.

By default, an event is counted on it’s "positive polarity". By prefixing the event name/number
with a hyphen, the event will be counted on it’s "negative polarity". For cycle-counting events, this
means the counter will increment for every cycle when the event is *not* occurring. For edge-
counting events, this means the counter will increment *after* the event has completed, instead of
immediately upon the event occurring.

While most events are counted only in cycles or only edges, some events allow the user to decide
which way to count. In these cases, the count type is specified by appending a ".C" or a ".E" to the
ev ent number or name. The events that allow this choice are shown with the appended ".C" or ".E"
in the list displayed with the--list-events option. Thedefault is ".C".

When counting an event in the SPU or MFC groups, the desired SPU/MFC (subunit) number is
given by suffixing the event name/number with a colon and the SPU/MFC number. If no number is
given, it defaults to 0. The subunit number is ignored for other event groups.

The counters are initialized to 0 unless an initial value is given with "=VALUE" after the event
number or name.

To count all clock cycles without regard to events, specify event "C".

To count events on the external trigger, specify event "Ext". This can also be prefixed with "+" or
"-" to indicate the desired polarity, and suffixed with ".C" or ".E" to indicate whether cycles or
edges should be counted.

To specify a switch-timeout for an individual event-set, add:
,{switch_timeout_value} to the end of the list of events. See the information for the --switch-

timeout option for allowable timeout values. If no timeout value is given for an event-set, the glob-
al value given by the --switch-timeout option is used.

Events are grouped together according to logic units within the Cell processor. The PMU can only
count events for up to two groups at once, but can count any number of events within a group (up
to the number of counters). Use the--list-events option to get a list of all events and which groups
they belong to. Counting the same event for two different SPUs/MFCs counts as two different
groups.

Due to hardware limitations, not all combinations of events can be counted at the same time. Use
the --query option to verify whether a particular combination is valid without actually counting
anything.

Example:
--events 2104=501,-IL1_Miss_Cycles_t1.E,C,4104:2=344

Linux 2007-06-01 2

CPC(1) CPC(1)

Counter 0 counts event 2104, beginning
with an initial value of 501.

Counter 1 counts the IL1_Miss_Cycles_t1 event
(number 2123) with negative polarity and an
initial value of zero. It counts the number
of events that occur (instead of the number of
cycles elapsed while the event is occurring).

Counter 2 counts all processor cycles.

Counter 4 counts event 4104 for SPU 2,
beginning with an initial value of 344.

-s, --switch-timeout TIME
Global timeout value for switching event-sets in the kernel. If a timeout value is not given for an
individual event-set, this value is used. Suffix the value with ’n’ for nanoseconds, ’u’ for microsec-
onds, ’m’ for milliseconds, or ’s’ for seconds. If no suffix is given, the value is in milliseconds.
The default timeout value is 50 milliseconds. This option only applies if multiple event-sets are
specified - no switching occurs if only one event-set is used.

-c, --cpus CPUS
Monitor the specified physical CPUs (CBE nodes) in system wide mode instead of monitoring a
single workload. ’CPUS’ can be ’all’ to monitor all available CPUs, or it can be a comma-seperat-
ed list of physical CPUs. This option only applies if a workload is not specified.

Note that this option takes *physical* CPU numbers, since there is only one PMU per physical
CPU. Each physical CPU has two hardware threads, and each of these threads is reported by Linux
as a separate logical processor. In a dual-CPU system, physical CPU 0 will contain logical CPUs 0
and 1, and physical CPU 1 will contain logical CPUs 2 and 3.

-t, --time TIME
Monitor the CPUs (specified with the --cpus option) in system-wide mode for the specified num-
ber of seconds. If --cpus is given, but --time isn’t, the tool will start monitoring and wait until an
EOF (control-D) is received. This option only applies in system-wide monitoring mode - it is ig-
nored when monitoring a specific workload.

-m, --mode MODE
Count only when in specified MODE:
a count in all modes
s count in supervisor (kernel) mode
p count in problem (user) mode
h count in hypervisor mode
k alternate for s
u alternate for p
y alternate for h

Miscellaneous Actions

Linux 2007-06-01 3

CPC(1) CPC(1)

-q, --query
Query to see if an event combination is valid without performing any actions.

--single-threaded
Don’t use multiple threads for running the Perfmon2 system-calls in parallel to all the CPUs.
Make the system-calls sequentially from the main cpc process. This should only be necessary for
debugging the Perfmon2 kernel driver.

Output Formatting Options

-o, --output filename
Write the normal text output to the specified file instead of to the screen.

-H, --html filename
Write output in HTML format to the specified file. If --list-events is also given, the output file will
contain an HTML version of the event list.

--xml filename
Write output in XML format to the specified file. If --list-events is also given, the output file will
contain an XML version of the event list.

-x, --hex
Display counter values in hexidecimal.

--hw-signal-names
Display hardware signal names instead of descriptive event names.

Hardwar e Sampling Options

-i, --interval I NTERVAL
Sampling INTERVAL. Suffix the value with ’n’ for nanoseconds, ’u’ for microseconds, or ’m’ for
milliseconds. If no suffix is given, the value is in core clock cycles. The minimum value is 10 cy-
cles or 4 nanoseconds. The counters are reset at the beginning of each interval. If this option is
specified, the sampling data will be stored in the hardware trace-buffer and the sampling mode will
default to "count" (unless--sampling-modeoption specifies an alternate mode).

--sampling-mode TYPE
Indicates the TYPE of data stored to the sampling-buffer. If "none", the counters contain data for
the entire duration of the workload. If the "--interval" option is specified, the default is "count".
none Storeno data. (default)
count Storecounter values.
occurrence Storeoccurrence data.
threshold Storethreshold data.

--sampling-buffer-size SIZE_FACTOR
Multiple of the hardware trace-buffer size to use for the in-kernel sampling-buffer. The hardware
trace-buffer is 16 kB, and the default SIZE_FACTOR value is 10, which gives a default kernel
sampling-buffer size of 160 kB.

Linux 2007-06-01 4

CPC(1) CPC(1)

--thermal-data
Collect thermal data in the sampling-buffer. This option cannot be used with occurrence or thresh-
old sampling. It also cannot be used when using counters two or three. This option can also be
used without giving a set of events to count.

--overwrite-samples
Overwrite the hardware sampling data when the buffer fulls up. Only the data from the most recent
1024 samples will be available.

--ppu-branch-trace HW_THREADS
Enable PPU branch address tracing for the specified hardware threads on all CPUs that are being
monitored. ’HW_THREADS’ can be ’all’ to monitor all hardware threads, or it can be a comma-
seperated list of hardware threads. This option requires that one of the hardware-sampling modes
be enabled. Counter 0 cannot be used with this option.

--ppu-bookmark-trace HW_THREADS
Enable PPU bookmark tracing for the specified hardware threads on all CPUs that are being moni-
tored. ’HW_THREADS’ can be ’all’ to monitor all hardware threads, or it can be a comma-seper-
ated list of hardware threads. This option requires that one of the hardware-sampling modes be en-
abled. Counter 0 cannot be used with this option.

Start/Stop Qualifier Options

--start-on-ctr0 N
Start counters when counter 0 has counted "N" events. Counter 4 cannot be used with this option
enabled, unless--stop-on-ctr4 is also used. "N" must be limited to a 16-bit value.

--stop-on-ctr4 N
Stop counters when counter 4 has counted "N" events. Counter 0 cannot be used with this option
enabled, unless--stop-on-ctr0 is also used. "N" must be limited to a 16-bit value.

--start-on-trigger0
Start counters upon debug bus trigger 0.

--start-on-trigger1
Start counters upon debug bus trigger 1.

--start-on-trigger2
Start counters upon debug bus trigger 2.

--start-on-trigger3
Start counters upon debug bus trigger 3.

--stop-on-trigger0
Stop counters upon debug bus trigger 0.

--stop-on-trigger1
Stop counters upon debug bus trigger 1.

Linux 2007-06-01 5

CPC(1) CPC(1)

--stop-on-trigger2
Stop counters upon debug bus trigger 2.

--stop-on-trigger3
Stop counters upon debug bus trigger 3.

--start-on-ppu-spr-trigger1
Start counters upon PPU SPR trigger 1.

--stop-on-ppu-spr-trigger2
Stop counters upon PPU SPR trigger 2.

--start-on-event1
Start counters upon debug bus event 1.

--stop-on-event2
Stop counters upon debug bus event 2.

--start-on-ppu-th0-bookmark
Start counters upon PPU hardware-thread 0 bookmark start.

--start-on-ppu-th1-bookmark
Start counters upon PPU hardware-thread 1 bookmark start.

--stop-on-ppu-th0-bookmark
Stop counters upon PPU hardware-thread 0 bookmark stop.

--stop-on-ppu-th1-bookmark
Stop counters upon PPU hardware-thread 1 bookmark stop.

--restart-enable
Allows prequalifier start after prequalifier stop.

Workload
Program and arguments to execute while counting events. The --cpus and --time options are ig-
nored if a workload is specified.

If no workload is specified and the --cpus option is not given, all CPUs will be monitored in sys-
tem-wide mode. Additionally, if the --time option is not given, the tool will start monitoring and
wait until control-D (EOF) is received.

HARDWARE SAMPLING
The Cell PMU provides a mechanism for the hardware to periodically read the counters and store the re-
sults in a hardware buffer. This allows the cpc tool to collect a large number of counter samples while great-
ly reducing the number of calls that cpc has to make into the kernel.

Use the--interval option to specify the length of the sampling period, in time or in clock cycles. In most
cases, the counters should be initialized to zero, since they are all reset to their initial value at the end of

Linux 2007-06-01 6

CPC(1) CPC(1)

each sampling period. As it runs and monitors the workload or the system, cpc periodically reads the con-
tents of the in-kernel sampling-buffer. Information for all accumulated samples is displayed after monitor-
ing is complete.

In addition to simply sampling the counters, the Cell PMU provides a variety of other sampling modes.

Occurrence sampling(--sampling-mode occurrence) monitors up to 64 events at once. Each sample con-
tains one bit for each event, indicating whether the event occurred at least once during that interval. All of
the events in an event-group are monitored, and up to two groups can be monitored at once. Use the
--events option to specify any event in the group(s) to be sampled.

Thr eshold sampling(--sampling-mode threshold) monitors the counters, and records one bit for each ac-
tive counter that indicates whether the associated event occurred at least some specified number of times
(the "threshold"). For this to be useful, the events need to be initialized to the desired "threshold" value. If
no initial value is given for an event, a threshold of zero is used, which means that event will always hit its
threshold.

Thermal sampling (--thermal-data) collects information about the temperature in various areas of the
Cell processor. The PPU and all eight SPUs contain temperature sensors, and the values of these sensors
can be routed to the sampling-buffer. This option cannot be used with occurrence or threshold sampling,
since the data is stored in the same place in the sampling-buffer. This option can be used with regular count
sampling, but cannot be used when counters 2, 3, 6, or 7 are enabled. This option can also be used by itself,
without loading any other events to count.

Partial samples

When cpc is running in one of the hardware-sampling modes, kernel events can occur that may disrupt the
collection of a sample. These kernel event include context-switching the workload process that is being
monitored, switching event-sets (if multiple sets of events are given), and handling PMU interrupts.When
one of these occur, the hardware may be part-way through collecting the current sample. However, the
hardware sampling-buffer cannot be restored to a previous state, so the kernel must record the data that is
available for that fraction of a sample. When the PMU is enabled again, it will start collecting a new sam-
ple.

In regular counter-sampling mode, the kernel has access to the hardware counters that are being sampled,
so the intermediate counter values can be copied into the sampling-buffer. In the cpc output, these samples
will indicate they are only partially complete, and give the percentage of the interval that was completed be-
fore it was interrupted.

However, in occurrence, threshold and thermal sampling modes, the kernel does not have access to the
hardware where the intermediate values are stored during each interval. In these cases, the cpc output will
show all zero data for that sample, and will mark the line as incomplete.

PPU branch-address tracing

CPC provides the ability to gather a trace of certain branch addresses that occur on the PPU. In particular,
the bclr(l), bcctr(l), and rfid instructions, which are generally used for subroutine return, can be traced for
either or both of the PPU hardware-threads. Use the --ppu-branch-trace option to enable this feature, and
specify the list of hardware-threads that should be monitored, or ’all’ to monitor all hardware-threads.

This feature can be used by itself, or in addition to any of the other hardware- sampling modes. If this is
used with any other hardware-sampling mode, the PPU branch addresses will be interspersed with the
counter sampling data.

Linux 2007-06-01 7

CPC(1) CPC(1)

PPU bookmark tracing

In addition to tracing branch addresses, CPC can generate traces for writes to the PPU bookmark special-
purpose registers. When the --ppu-bookmark-trace option is used, all values written to the bookmark regis-
ter will be copied into the sampling buffer. Just like branch-address tracing, bookmark tracing can be used
at the same time as one of the hardware-sampling modes, and the bookmark values will be interspersed
with the counter sampling data.

From the command line, to write to the bookmark register for the first physical CPU, echo the desired value
into the /sys/devices/system/cpu/cpu0/pmu_bookmark file. For the second physical CPU, use the file
/sys/devices/system/cpu/cpu2/pmu_bookmark. These files can also ben written to from within another pro-
gram by using open() and write(). However, the value written to the file must be an ASCII string of the de-
sired value, not the actual numerical value.

Hardware-sampling kernel module

In order to use any of these hardware sampling options, theperfmon_cell_hw_smplkernel module must
be loaded. If cpc is running as root, it will automatically load this module if it isn’t already loaded. If cpc is
running as a non-root user, the module must already be loaded. On Redhat and Fedora-based systems, the
module can be autoloaded at boot-time by adding the file/etc/sysconfig/modules/perfmon.modules, with
execute permissions, containing the following two lines:

#!/bin/sh
modprobe perfmon_cell_hw_smpl > /dev/null 2>&1

START/STOP QUALIFIERS
CPC provides several options for starting and/or stopping the counters after some condition has occurred.
When a --start-on options is used, the counters will not actually begin counting until the related event oc-
curs. When a --stop-on options is used, the counters will stop once the related event occurs.

Start on counter 0 and stop on counter 4

CPC provides options to start and stop the counters when a certain number of countable events have oc-
curred. In order to use this feature, specify the --start-on-ctr0 and/or --stop-on-ctr4 option. Each of these op-
tions takes an argument which is the number of events to count before starting/stopping the counters. When
either of these options are used, the other counter (0 or 4) cannot be used as a regular counter. Both coun-
ters can be used if both --start-on-ctr0 and --stop-on-ctr4 are used. In addition, the argument to these op-
tions must be limited to a 16-bit value (less than 65536).

Start/stop on PPU bookmark writes

CPC provides options to start and stop the counters whenever a value is written to one of the PPU book-
mark registers. Each physical Cell CPU has two logical CPUs (a.k.a. hardware threads), and each logical
CPU has its own bookmark register. If the --start-on-ppu-th0-bookmark option is used, writes to the first
hardware thread on any monitored physical CPU will start the counters. If the --start-on-ppu-th1-bookmark
option is used, writes to the second hardware thread on any monitored physical CPU will start the counters.
The semantics are the same for the --stop-on-ppu-th0-bookmark and --stop-on-ppu-th1-bookmark options.

To write to the bookmark register, use the files /sys/devices/system/cpu/cpuX/pmu_bookmark, where ’X’ is
the logical CPU number. Logical CPUs 0 and 1 are the two hardware threads on physical CPU 0, and logi-
cal CPUs 2 and 3 are the two hardware threads on physical CPU 1. From the command line, echo a decimal
value into the file to write to the bookmark register. These files can also be written to from within another
program by using open() and write(). However, the value written to the file must be an ASCII string of the

Linux 2007-06-01 8

CPC(1) CPC(1)

desired value, not the actual numerical value.

Specific values must be written to the bookmark register in order to start and/or stop the counters. To start
the counters, use the value 2ˆ63, or 9223372036854775808. To stop the counters, use the value 2ˆ62, or
4611686018427387904.

Start/stop qualifier restrictions

The start/stop qualifiers go into effect each time the PMU is enabled. However, in order to support features
like per-process monitoring, multiple event-sets, hardware-sampling and 64-bit virtual counters, the kernel
frequently disables and re-enables the PMU. For example, when a monitored process is context switched
out, the PMU is disabled and the PMU state is saved in the process context. When that monitored process is
scheduled on the CPU again, the PMU state is reloaded and the PMU is enabled again. However, the PMU
treats that as a whole new monitoring session with regard to the start/stop qualifiers, instead of a continua-
tion of a previous session. Even if a start/stop qualifier had been triggered previously, it will wait for that
qualifier to occur again before the counters actually start.

Therefore, all the start/stop qualifier options are only supported in system- wide mode, with a single event-
set, and without any hardware-sampling modes.In addition, the 64-bit virtual counters are disabled. If a
counter reaches its maximum value (2ˆ32-1), it will stop counting.

EXAMPLES
Example 1: Workload mode, single event-set

cpc --events 2104.E,2123.E math_test 1000 100000

Run the program "math_test 1000 100000", and measure events 2104 and 2123 (L1 i-cache misses
for hardware threads 0 and 1) while the command is running.

Output:

The cpc output always starts with a header and a copy of the cpc command that was run. When
running in workload mode, the header info is followed by basic information about the workload
that was monitored. Then the actual results are displayed. In workload mode, there will be one set
of results for each event-set given on the command-line. The results include the values of all the
PMU control registers that were used for that event-set, followed by data for each hardware
counter. Each counter line shows the count value, the number and name of the event that was as-
signed to that counter, whether the event was counted in ’events’ (E) or ’cycles’ (C), and which
SPU was monitored (if applicable for that event).

* Cell Perf-Counter Results *

Command: cpc --events 2104.E,2123.E math_test 1000 100000

Workload

Command: math_test1000 100000
Process ID: 24459
Return value: 0
Started: Tue Aug 7 12:40:14 2007
Stopped: Tue Aug 7 12:40:17 2007
Duration: 2.925406seconds

Linux 2007-06-01 9

CPC(1) CPC(1)

Results For Workload
====================

Event-Set 0

Control Registers

Register Value
-------- ----------
group_control 0x00000000
debug_bus_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0xc0000000
pm_control 0x000c0000
pm_interval 0x00000000
pm_start_stop 0x00000000

pm0_control 0x11400000
pm1_control 0x5d400000

pm0_event 0x00000000fffff 7c8
pm1_event 0x00000000fffff 7b5

Data Counters

Event Count
Ctr Count Number Type SPU Event Name
--- ------------- ------ ----- --- ----------
0 43754 2104 E IL1_Miss_Cycles_t0
1 30995 2123 E IL1_Miss_Cycles_t1

Example 2: System-wide mode, single event-set

cpc --events C,2100,2119 --cpus all --time 10s

Measure clock-cycles and branch instructions committed on both hardware threads, for all pro-
cesses on all CPUs for ten seconds.

Output:

In system-wide mode, a set of results is displayed for each physical CPU that was given by the
--cpus option, and each of these sets will contain one set of results for each event-set. The format
of the results is the same as in workload mode.

* Cell Perf-Counter Results *

Command: cpc --events C,2100,2119 --cpus all --time 10s

Linux 2007-06-01 10

CPC(1) CPC(1)

Results For Physical CPU 0
==========================

Event-Set 0

Control Registers

Register Value
-------- ----------
group_control 0x00000000
debug_bus_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0xe0000000
pm_control 0x000c0000
pm_interval 0x00000000
pm_start_stop 0x00000000

pm0_control 0x42c00000
pm1_control 0x01c00000
pm2_control 0x4dc00000

pm0_event 0x0000000000000000
pm1_event 0x00000000fffff 7cc
pm2_event 0x00000000fffff 7b9

Data Counters

Event Count
Ctr Count Number Type SPU Event Name
--- ------------- ------ ----- --- ----------
0 32010733502 0 C System Clock Cycles
1 2482563 2100 C Branch_Commit_t0
2 1191865 2119 C Branch_Commit_t1

Results For Physical CPU 1
==========================

Event-Set 0

Control Registers

Register Value
-------- ----------
group_control 0x00000000
debug_bus_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0xe0000000

Linux 2007-06-01 11

CPC(1) CPC(1)

pm_control 0x000c0000
pm_interval 0x00000000
pm_start_stop 0x00000000

pm0_control 0x42c00000
pm1_control 0x01c00000
pm2_control 0x4dc00000

pm0_event 0x0000000000000000
pm1_event 0x00000000fffff 7cc
pm2_event 0x00000000fffff 7b9

Data Counters

Event Count
Ctr Count Number Type SPU Event Name
--- ------------- ------ ----- --- ----------
0 32010774708 0 C System Clock Cycles
1 1216673 2100 C Branch_Commit_t0
2 1177159 2119 C Branch_Commit_t1

Example 3: Workload mode, multiple event-sets, additional output formats

cpc --events 2111,2130 --events 2205,2221 --switch-timeout 100ms \
--output test1.txt --xml test1.xml --html test1.html \
math_test 1000 100000

Run the "math_test" program, and count PPC instructions committed in one event-set, and L1 d-
cache load misses in a second event-set. Run each event-set for 100 milliseconds before switching
to the other event-set. Write the text output to the file test1.txt, and generate html and xml outputs
in the files test1.html and test1.xml.

Output:

The output file test1.txt will contain the following text, with one set of results for each of the
ev ent-sets measured. The test1.html file will contain the results in very similar looking format for
viewing in a web browser, and test1.xml will contain data in a format that can be input into VPA.

* Cell Perf-Counter Results *

Command: cpc --events 2111,2130 --events 2205,2221 --switch-timeout 100ms --output test1.txt --xml test1.xml --html test1.html math_test 1000 100000

Workload

Command: math_test1000 100000
Process ID: 24838
Return value: 0
Started: Tue Aug 7 13:10:18 2007
Stopped: Tue Aug 7 13:10:21 2007
Duration: 2.925257seconds

Linux 2007-06-01 12

CPC(1) CPC(1)

Results For Workload
====================

Event-Set 0

Control Registers

Register Value
-------- ----------
group_control 0x00000000
debug_bus_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0xc0000000
pm_control 0x000c0000
pm_interval 0x00000000
pm_start_stop 0x00000000

pm0_control 0x2dc00000
pm1_control 0x79c00000

pm0_event 0x00000000fffff 7c1
pm1_event 0x00000000fffff 7ae

Data Counters

Event Count
Ctr Count Number Type SPU Event Name
--- ------------- ------ ----- --- ----------
0 1463270 2111 C PPC_Commit_t0
1 334414208 2130 C PPC_Commit_t1

Event-Set 1

Control Registers

Register Value
-------- ----------
group_control 0x00000000
debug_bus_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0xc0000000
pm_control 0x000c0000
pm_interval 0x00000000
pm_start_stop 0x00000000

pm0_control 0x15c00000
pm1_control 0x55c00000

Linux 2007-06-01 13

CPC(1) CPC(1)

pm0_event 0x00000000fffff 763
pm1_event 0x00000000fffff 753

Data Counters

Event Count
Ctr Count Number Type SPU Event Name
--- ------------- ------ ----- --- ----------
0 830462939 2205 C DL1_Miss_t0
1 0 2221 C DL1_Miss_t1

Example 4: Hardware sampling

cpc --events C,2104,2123 --interval 1ms math_test 1000 100000

Run the "math_test" program and collect counter samples every 1 millisecond.

Output:

In all hardware sampling modes, the results for each event-set include a short table showing which
ev ents are assigned to each counter, followed by a (potentiall very long) table of the raw sampling
data. Each counter has one column of data, and each row begins with the sample number. As ex-
plained in the "Partial Samples" section above, some of the lines of data include a note at the end
indicating that the line represents an incomplete sample, and gives the percentage complete for the
interval. The sampling-buffer header information gives the total number of samples as well as the
number of incomplete samples.

* Cell Perf-Counter Results *

Command: cpc --events C,2104,2123 --interval 1ms math_test 1000 100000

Workload

Command: math_test1000 100000
Process ID: 25216
Return value: 0
Started: Tue Aug 7 13:48:36 2007
Stopped: Tue Aug 7 13:48:39 2007
Duration: 2.930169seconds

Results For Workload
====================

Event-Set 0

Control Registers

Register Value
-------- ----------

Linux 2007-06-01 14

CPC(1) CPC(1)

group_control 0x00000000
debug_bus_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0x00400000
pm_control 0x500c0000
pm_interval 0xffcf2bff
pm_start_stop 0x00000000

pm0_control 0x42c00000
pm1_control 0x11c00000
pm2_control 0x5dc00000

pm0_event 0x0000000000000000
pm1_event 0x00000000fffff 7c8
pm2_event 0x00000000fffff 7b5

Sampling Buffer

Interval: 3200000 clock cycles
Number of Samples: 2926 (10 incomplete)

Bit Event Count
Ctr Width Number Type SPU Event Name
--- ----- ------ ----- --- ----------
0 32 0 C System Clock Cycles
1 32 2104 C IL1_Miss_Cycles_t0
2 32 2123 C IL1_Miss_Cycles_t1

Sample Ctr0 Ctr 1 Ctr 2
------ ----------- ----------- -----------

0 1122916 0 316640 (only35.1% complete)
1 692188 0 277432 (only21.6% complete)
2 13850 0 1732 (only0.4% complete)
3 1005070 0 307826 (only31.4% complete)
4 3200000 0 516100
5 3200000 67272 59396
6 3200000 0 0
7 3200000 0 0
8 3200000 0 0
9 3200000 1066 9304
10 3200000 0 0

[example data removed for brevity]

2915 3200000 518 962
2916 3200000 0 0
2917 3200000 0 0
2918 3200000 0 0
2919 3200000 720 572
2920 3200000 0 0
2921 3200000 0 0
2922 3200000 0 0

Linux 2007-06-01 15

CPC(1) CPC(1)

2923 3200000 626 824
2924 2829438 0 460496 (only88.4% complete)
2925 197044 92618 0 (only 6.2% complete)

Example 5: Hardware sampling, threshold mode

cpc --events 2104=100,2123=200 --interval 1ms \
--sampling-mode threshold math_test 1000 100000

Run the "math_test" program and collect threshold samples every 1 millisecond. The threshold for
ev ent 2104 is 100, and the threshold for event 2123 is 200.

Output:

In the sampling data results, each sample shows a 1 or 0 for each counter to indicate whether that
counter exceeded its threshold value during that interval.

* Cell Perf-Counter Results *

Command: cpc --events 2104=100,2123=200 --interval 1ms --sampling-mode threshold math_test 1000 100000

Workload

Command: math_test1000 100000
Process ID: 25323
Return value: 0
Started: Tue Aug 7 13:58:18 2007
Stopped: Tue Aug 7 13:58:21 2007
Duration: 2.926313seconds

Results For Workload
====================

Event-Set 0

Control Registers

Register Value
-------- ----------
group_control 0x00000000
debug_bus_control 0x00000000
trace_address 0x00000000
ext_tr_timer 0x00000000
pm_status 0x00400000
pm_control 0x700c0000
pm_interval 0xffcf2bff
pm_start_stop 0x00000000

pm0_control 0x11c00000
pm1_control 0x5dc00000

Linux 2007-06-01 16

CPC(1) CPC(1)

pm0_event 0x00000000fffff 7c8
pm1_event 0x00000000fffff 7b5

Threshold Sampling Buffer

Counters that overflowed during the sample interval.

Interval: 3200000 clock cycles
Number of Samples: 2992 (112 incomplete)

Threshold Event Count
Ctr Value Number Type SPU Event Name
--- ------------- ------ ----- --- ----------
0 100 2104 C IL1_Miss_Cycles_t0
1 200 2123 C IL1_Miss_Cycles_t1

Counters

Sample 0 1
------ -- --

0 0 0(Incomplete)
1 0 0(Incomplete)
2 0 0(Incomplete)
3 0 0(Incomplete)

[skipped for brevity]

278 0 0
279 1 1
280 1 0
281 1 0
282 1 0
283 1 1
284 0 0
285 0 0
286 0 0
287 1 1
288 0 0
289 0 0
290 0 0
291 1 1
292 0 0
293 0 0
294 0 0
295 1 1
296 0 0
297 0 0
298 0 0
299 1 1
300 0 0

Linux 2007-06-01 17

CPC(1) CPC(1)

SEE ALSO
oprofile(1)

AUTHOR
Kevin Corry <kevcorry@us.ibm.com>

Linux 2007-06-01 18

