
Software Development Kit for Multicore Acceleration

Version 3.1

SPU Runtime Library Extensions

Programmer’s Guide and API Reference

SC34-2593-00

���

Software Development Kit for Multicore Acceleration

Version 3.1

SPU Runtime Library Extensions

Programmer’s Guide and API Reference

SC34-2593-00

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 51.

This edition applies to version 3, release 1, modification 0 of the IBM Software Development Kit for Multicore

Acceleration (Product number 5724-S84) and to all subsequent releases and modifications until otherwise indicated

in new editions.

© Copyright International Business Machines Corporation 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this publication v

How to send your comments v

Part 1. SPU timer library 1

Chapter 1. Overview of the SPU timer

library 3

Chapter 2. Installing the SPU timer

library 5

Chapter 3. Programming with the SPU

timer library 7

Part 2. EA library 13

Chapter 4. The _ea address space

qualifier language extension 15

The _ea address space qualifier language extension

implementation in GCC 15

Chapter 5. Installing the EA library APIs 17

Chapter 6. Programming with the EA

library APIs 19

PPU Linux system calls 19

Support for PPE address space on the SPE 20

Part 3. APIs 23

Chapter 7. SPU timer library APIs . . . 25

spu_clock_start 26

spu_clock_stop 27

spu_clock_read 28

spu_timer_alloc 29

spu_timer_free 30

spu_timer_start 31

spu_timer_stop 32

spu_slih_register 33

spu_clock_slih 34

spu_timebase 35

Part 4. Appendixes 37

Appendix A. SPU constants 39

Appendix B. Example: programming

with the SPU timer library 41

Appendix C. Example: programming

with the EA library 45

Appendix D. Related documentation . . 47

Appendix E. Accessibility features . . . 49

Notices 51

Trademarks 53

Terms and conditions 53

Index 55

© Copyright IBM Corp. 2008 iii

iv SPU Runtime Library Extensions Guide

About this publication

This publication describes the SPU Runtime Library Extensions in detail and how

to program applications using it on the IBM Software Development Kit for

Multicore Acceleration (SDK). It contains detailed reference information about the

APIs for the library as well as sample applications showing usage of these APIs.

Who should use this book

The target audience for this document is application programmers using the SDK.

You are expected to have a basic understanding of programming on the Cell

Broadband Engine™ (Cell/B.E.) platform and common terminology used with the

Cell/B.E. platform.

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

Bold Lowercase commands,

library functions.

void sscal_spu (float *sx,

float sa, int n)

Italics Parameters or variables

whose actual names or

values are to be supplied by

the user. Italics are also used

to introduce new terms.

The following example

shows how a test program,

test_name can be run

Monospace Examples of program code

or command strings.

int main()

Related information

For a list of SDK documentation, see Appendix D, “Related documentation,” on

page 47.

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. If you have any comments about this publication, send your

comments using IBM Resource Link™ at http://www.ibm.com/servers/
resourcelink. Click Feedback on the navigation pane. Be sure to include the name

of the book, the form number of the book, and the specific location of the text you

are commenting on (for example, a page number or table number).

© Copyright IBM Corp. 2008 v

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

vi SPU Runtime Library Extensions Guide

Part 1. SPU timer library

The topics in this section describe how to use the SPU timer library.

The following topics are described:

v Chapter 1, “Overview of the SPU timer library,” on page 3

v Chapter 2, “Installing the SPU timer library,” on page 5

v Chapter 3, “Programming with the SPU timer library,” on page 7

© Copyright IBM Corp. 2008 1

2 SPU Runtime Library Extensions Guide

Chapter 1. Overview of the SPU timer library

The SPU timer library provides a software-managed 64-bit monotonically

increasing clock and interval timer services for SPU programs. The clock is a 64-bit

software managed, monotonically increasing time base counter. The interval timers

provide the ability to register a user-defined handler to be called at a specified

interval.

By managing the decrementer register, the SPU timer library provides the ability to

perform high-precision time measurements, while simultaneously activating one or

more interval timers, which can be used for statistical, sample-based profiling.

Terminology

The following terms are used throughout this document:

FLIH First-Level Interrupt Handler. This is code to which the processor branches

in response to an interrupt. SPU programs that enable interrupts must

place their interrupt handler code at fixed address 0x0. By default, code

specified in the ″.interrupt″ section of the object is placed at this address.

SLIH Second-Level Interrupt Handler. Code that by convention services a

specific interrupt type and is called by the FLIH.

Time Base

A hardware register defined by the PowerPC® architecture which

represents an elapsed time. It is a monotonically increasing counter that

ticks at an implementation-specific Time Base frequency.

Decrementer

A hardware register defined by the PowerPC architecture which is

available on the Cell BE PPU and SPU. This register counts down from its

programmed value at the Time Base frequency and generates an interrupt

or event when the count has expired. On the SPU, the decrementer is a

32-bit, user-programmable register.

© Copyright IBM Corp. 2008 3

4 SPU Runtime Library Extensions Guide

Chapter 2. Installing the SPU timer library

The SPU timer library is available as part of the SDK new library.

Refer to the SDK Installation Guide for more information.

© Copyright IBM Corp. 2008 5

6 SPU Runtime Library Extensions Guide

Chapter 3. Programming with the SPU timer library

This section describes how to program with SPU timer library.

It covers the following topics:

v “Using the software clock”

v “Using SPU timers”

v “Interrupt handlers” on page 8

v “Programming environment” on page 8

v “Examples using clocks and timers” on page 9

Using the software clock

The software clock provided by the SPU timer library is a 64-bit software managed

Time Base counter that represents the elapsed runtime of the calling thread since

the start of the clock. The clock increments at the Time Base frequency so it can be

used to perform relatively high precision time measurements. To start the clock,

call the spu_clock_start() service, and to read the clock, call the spu_clock_read()

service.

Using SPU timers

The timers provided by the SPU timer library are interval timers. The timers are

interval timers, meaning they will repeatedly expire after the specified interval

when the decrementer is enabled for interrupts. A timer allows an application to

register a handler to be called on a specified interval. A timer allows an application

to register a handler to be called on a specified interval. Up to SPU_TIMER_NTIMERS

can be active at a time, each with a different expiration interval.

To use a timer, you must first use the spu_timer_alloc() service to allocate it.

After the timer has been allocated, use the spu_timer_start() and

spu_timer_stop() services to start and stop it as required. The ability to start and

stop a timer is useful because it allows specific blocks of code to be profiled. When

a timer is no longer needed, use the spu_timer_free() service to free it. A timer

must in the stopped state for it to be freed. A timer is in the stopped state if it has

been allocated and not yet started, or has been previously started and explicitly

stopped.

After the timer has been started, it calls the registered handler at each interval.

When called, the timer ID of the expired timer is passed to the handler. This makes

it possible to use the same handler for multiple timers, if desired, because the

handler has the option to take timer-specific action based on the ID. After the

handler is called, the timer is automatically restarted with the same interval and

handler, unless the handler has stopped it. The handler can also free the timer after

it has stopped it, in which case it cannot be restarted.

You should chose the expiration interval of the timer based on the trade off

between the statistical accuracy of the samples and the performance impact of

doing the sampling. A good starting point is an interval of one millisecond or 100

tics. The timer interval is specified in Time Base units, so a conversion from

seconds to Time Base units needs to be done to determine a reasonable value. The

Time Base frequency is system-dependent but can be determined by reading the

© Copyright IBM Corp. 2008 7

value as reported in the /proc/cpuinfo file or using the spu_timebase() API. See

“spu_timebase” on page 35

Interrupt handlers

The clock and timer services require the use of first-level interrupt handlers (FLIH)

and second-level interrupt handlers (SLIH) for servicing timer requests. The library

provides both a FLIH and a SLIH for handling the decrementer interrupt. The use

of the library-supplied SLIH is required for using the clock and timer services. Use

of the library-supplied FLIH is optional, but recommended.

Applications that wish to use the library-supplied FLIH need to just call the

provided spu_slih_register() service to register spu_clock_slih() as the SLIH for

the MFC_DECREMENTER_EVENT. This service is part of the library FLIH and the symbol

reference to it causes it to be linked into the application.

Applications that wish to supply their own FLIH, must register spu_clock_slih()

using their own mechanism.

The SLIH must be registered before using any of the clock or timer services.

Registration of new handlers after the clock and timers have been activated is not

supported and results in undefined behavior.

Notes if using a user-provided FLIH: the contents of the SPU_RdEventStat register

should be passed to spu_clock_slih(), which returns this status with the

decrementer event cleared. A user-provided FLIH should include the decrementer

event when acknowledging the events, but exclude the decrementer event when

the writing the event mask, The SPU clock code requires that the decrementer

continue to run while the timer handlers are running. The clock code restarts the

decrementer and enables for interrupts before returning.

Programming environment

Because the management of the SPU clock and timers is interrupt-driven,

application code must be aware that it can be interrupted at any time when using

them. This affects the use of events, as well as other global resources. As such,

access to global resources must be managed appropriately. This includes:

Hardware Resources: Hardware resources such as the MFC DMA write channels

may be used by applications, libraries, and interrupt handlers. To ensure

consistency of the state of these channels, application code that runs with

interrupts enabled must disable interrupts when performing a DMA, to ensure it

does not get interrupted during its sequence of channel writes. This also applies

any other channels that may be used by both the application code and the

interrupt handler.

Global Application Data: Accesses to global application data that might be shared

between the main application thread and the interrupt handler must similarly be

protected by disabling interrupts (or the specific event which triggers the access)

when manipulating the data.

User-Registered Handlers: Interrupt handlers must also be interrupt-safe, which

means they can’t acquire any application locks that may be acquired with

interrupts enabled, and they cannot call any library services that aren’t known to

be interrupt-safe. Applications can make their services interrupt-safe, as needed, by

8 SPU Runtime Library Extensions Guide

disabling interrupts when holding locks. Note that the SPU is disabled for

interrupts when the handlers are invoked.

Events: The SPU timer library enables the interrupt facility on the SPU whenever

the clock is running. When interrupts are enabled, all events that are of interest to

the application will generate an interrupt when they are posted. For this reason,

the SPU timer library should not be used with applications that may be using

synchronous event notification without being interrupt-safe. Code that may be

using synchronous events can be made interrupt-safe by disabling interrupts across

the period of time where the event could be posted and when it is recognized.

Decrementer: When the SPU clock is being used, all use of the decrementer needs

to be through the services provided by the library. Direct reading of the

decrementer when timers are enabled provides inconsistent results since it may be

reset frequently by the clock’s SLIH. Writing of the decrementer and registration of

a user-defined decrementer SLIH while the SPU clock is running is not supported

and results in undefined behavior.

Examples using clocks and timers

The first example shows how to use the SPU timer clock API to configure, start,

and read the clock. The second example shows how to use the SPU Timer APIs

with the clock APIs to configure an interval timer and profile a trivial loop.

Example 1: Using the SPU timer clock API

#include <spu_timer.h>

#include <spu_mfcio.h>

#include <stdio.h>

#include <unistd.h>

#define MAX_COUNT 0x100000ULL

static uint64_t ctr = 0;

/* profiled work function */

void work () {

 ++ctr;

}

/* non profiled work function */

void other_work () {

 ++ctr;

}

/* non profiled work control function */

int more_work () {

 int x = (ctr > MAX_COUNT) ? 0 : 1;

 return x;

}

/* timer interrupt handler counter */

static uint64_t actual_count = 0;

/* timer interrupt handler to collect data */

void my_prof_handler (int id)

{

 ++ actual_count;

}

int main ()

{

Chapter 3. Programming with the SPU timer library 9

uint64_t start;

 uint64_t time_working =0;

 int id;

 /* use library FLIS and SLIH */

 spu_slih_register (MFC_DECREMENTER_EVENT, spu_clock_slih);

 /* alloc timer for profiling */

 id = spu_timer_alloc (14318, my_prof_handler);

 /* start clock before timer */

 spu_clock_start ();

 /* profile the following block */

 spu_timer_start (id);

 while (more_work()) {

 /* measure total time for work() */

 start = spu_clock_read ();

 work();

 time_working += (spu_clock_read () - start);

 other_work ();

 }

 /* done profiling */

 spu_timer_stop (id);

 spu_timer_free (id);

 /* done profiling and timing */

 spu_clock_stop ();

 printf("MAX_COUNT[%lld] ctr[%lld] actual_count[%lld] time_working[%lld]\n",

 MAX_COUNT,ctr,actual_count,time_working);

 return 0;

}

Example 2: Using the SPU timer APIs with the clock APIs

#include <spu_timer.h>

#include <spu_mfcio.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define SLEEPTIME 10 /* sleep interval in seconds */

#define ITERATIONS 30 /* limit for sleep function calls */

/* QS20 timebase - from command: cat /proc/cpuinfo */

#define TIMEBASE 14318000int main()

{

 int rc;

 int x;

 uint64_t start_tics = 0;

 uint64_t end_tics = 0;

 uint64_t total_tics = 0;

 uint64_t seconds = 0;

 uint64_t remainder = 0;

 uint64_t timebase = spu_timebase()

 printf("Total sleeptime [%d] seconds in [%d] iterations of [%d] seconds\n",

 SLEEPTIME * ITERATIONS,ITERATIONS,SLEEPTIME);

 /* register slih to handle decrementer interval interrupts */

 spu_slih_register(MFC_DECREMENTER_EVENT, spu_clock_slih);

10 SPU Runtime Library Extensions Guide

spu_clock_start();

 start_tics = spu_clock_read();

 /* iterate sleep time intervals - iteration allows decrementer interrupts */

 for (x=0;x<ITERATIONS ;++x) {

 printf("interation %d, sleeping for %d seconds\n", x, SLEEPTIME);

 sleep(SLEEPTIME);

 }

 end_tics = spu_clock_read();

 rc = spu_clock_stop();

 total_tics = end_tics - start_tics;

 seconds = total_tics/timebase;

 remainder = total_tics % timebase;

 printf("sleep time in seconds[%d] total tics[%lld] seconds[%lld r%lld]\n",

 SLEEPTIME,total_tics,seconds,remainder);

 return 0;

}

Chapter 3. Programming with the SPU timer library 11

12 SPU Runtime Library Extensions Guide

Part 2. EA library

The topics in this section describe how to use the EA library.

The following topics are described:

v Chapter 4, “The _ea address space qualifier language extension,” on page 15

v Chapter 5, “Installing the EA library APIs,” on page 17

v Chapter 6, “Programming with the EA library APIs,” on page 19

v “PPU Linux system calls” on page 19

v “Support for PPE address space on the SPE” on page 20

© Copyright IBM Corp. 2008 13

14 SPU Runtime Library Extensions Guide

Chapter 4. The _ea address space qualifier language

extension

This topic describes the _ea address space qualifier language extension

implementations.

The following topics are described:

v “The _ea address space qualifier language extension implementation in GCC”

v For information about the _ea address space qualifier language extension

implementation in XLC, refer to:

http://publib.boulder.ibm.com/infocenter/cellcomp/v9v111/index.jsp?topic=/com.ibm.cellptf.doc/effective_address_support.html

The _ea address space qualifier language extension implementation in

GCC

When you develop SPE programs using the SDK, you may wish to reference

variables in the PPE address space from code running on an SPE. This is achieved

through an extension to the C language syntax.

It might be desirable to share data in this way between an SPE and the PPE. This

extension makes it easier to pass pointers so that you can use the PPE to perform

certain functions on behalf of the SPE. You can readily share data between all SPEs

through variables in the PPE address space.

The compiler recognizes an address space identifier __ea that can be used as an

extra type qualifier like const or volatile in type and variable declarations. You

can qualify variable declarations in this way, but not variable definitions.

The following are examples.

/* Variable declared on the PPE side. */

extern __ea int ppe_variable;

/* Can also be used in typedefs. */

typedef __ea int ppe_int;

/* SPE pointer variable pointing to memory in the PPE address space */

__ea int *ppe_pointer;

Pointers in the SPE address space can be cast to pointers in the PPE address space.

Doing this transforms an SPE address into an equivalent address in the mapped

SPE local store (in the PPE address space). The following is an example.

int x;

__ea int *ppe_pointer_to_x = &x;

These pointer variables can be passed to the PPE process by way of a mailbox and

used by PPE code. With this method, you can perform operations in the PPE

execution context such as copying memory from one region of the SPE local store

to another.

In the same way, these pointers can be converted to and from the two address

spaces, as follows:

© Copyright IBM Corp. 2008 15

http://publib.boulder.ibm.com/infocenter/cellcomp/v9v111/index.jsp?topic=/com.ibm.cellptf.doc/effective_address_support.html

int *spe_x;

spe_x = (int *) ppe_pointer_to_x;

References to __ea variables cause decreased performance. The implementation

performs software caching of these variables, but there are much higher overheads

when the variable is accessed for the first time. Modifications to __ea variables is

also cached. The writeback of such modifications to PPE address space may be

delayed until the cache line is flushed, or the SPU context terminates.

GCC for the SPU provides the following command line options to control the

runtime behavior of programs that use the __ea extension. Many of these options

specify parameters for the software-managed cache. In combination, these options

cause GCC to link your program to a single software-managed cache library that

satisfies those options. Table 2 describes these options.

 Table 2. Options

Option Description

-mea32 Generate code to access variables in 32-bit PPU objects. The

compiler defines a preprocessor macro __EA32__ to allow

applications to detect the use of this option. This is the default.

-mea64 Generate code to access variables in 64-bit PPU objects. The

compiler defines a preprocessor macro __EA64__ to allow

applications to detect the use of this option.

-mcache-size=8 Specify an 8 KB cache size.

-mcache-size=16 Specify an 16 KB cache size.

-mcache-size=32 Specify an 32 KB cache size.

-mcache-size=64 Specify an 64 KB cache size.

-mcache-size=128 Specify an 128 KB cache size.

-matomic-updates Use DMA atomic updates when flushing a cache line back to

PPU memory. This is the default.

-mno-atomic-updates

This negates the -matomic-updates option.

Accessing an __ea variable from an SPU program creates a copy of this value in

the local storage of the SPU. Subsequent modifications to the value in main storage

are not automatically reflected in the copy of the value in local store. It is your

responsibility to ensure data coherence for __ea variables that are accessed by

both SPE and PPE programs.

A complete example using __ea qualifiers to implement a quick sort algorithm on

the SPU accessing PPE memory can be found in the examples/ppe_address_space

directory provided by the SDK cell-examples tar ball.

16 SPU Runtime Library Extensions Guide

Chapter 5. Installing the EA library APIs

The EA library functions are available as part of the SPU runtime library (newlib).

Refer to the SDK Installation Guide for more information.

© Copyright IBM Corp. 2008 17

18 SPU Runtime Library Extensions Guide

Chapter 6. Programming with the EA library APIs

This topic describes how to program with the EA APIs.

The following topics are described:

v “PPU Linux system calls”

v “Support for PPE address space on the SPE” on page 20

Refer to Appendix C, “Example: programming with the EA library,” on page 45 for

sample code for EA library program application.

PPU Linux system calls

This topic describes how to use sys/linux_syscalls.h.

The Linux® Kernel does not implement all system calls for the SPU. Newlibs

header file sys/linux_syscalls.h defines symbolic names for each supported system

call number. The newlib implements only the most important system calls (see

Linux system call functions), but provides a generic interface to allow the

developer to implement them. The sys/linux_syscalls.h defines a struct called

spu_syscall_block and a function called __linux_syscall. The function takes a

pointer to the struct that defines the number of system call to be issued and an

array of up to six arguments:

A struct called spu_syscall_block:

struct spu_syscall_block

 {

 unsigned long long nr_ret; /* System call nr and return value. */

 unsigned long long parm[6]; /* System call arguments. */

 };

A function declaration for issuing a system call:

int __linux_syscall (struct spu_syscall_block *s)

The __linux_syscall function uses the stop and signal mechanism to notify the

Kernel to execute that particular system call.

Example

The following is an example for the read system call (that reads data from a file)

wrapped in a function called read_ea:

<snip>

 #include <ea.h>

 #include <sys/linux_syscalls.h>

 ssize_ea_t

 read_ea (int fd, __ea void *buf, size_ea_t count)

 {

 struct spu_syscall_block s = {

 __NR_read,

 {

 fd,

 (size_ea_t) buf,

 count,

 0,

© Copyright IBM Corp. 2008 19

0,

 0}

 };

 __cache_flush ();

 return __linux_syscall (&s);

 }

 </snip>

Note: This example is already implemented (see newlib/libc/machine/spu/
readv_ea.c) and declared in ea.h. Wherever possible, you should use the existing

functions instead of implementing your own. See “Linux system call functions” on

page 21 for a list of implemented Linux system call functions.

Support for PPE address space on the SPE

The __ea type qualifier is a PPE address namespace identifier. The syntax for using

it is the same as for using type qualifiers const and volatile.

For more information, refer to Chapter 4, “The _ea address space qualifier

language extension,” on page 15

Functions defined in ea.h behave exactly as their non-ea companions except that

they are work on ea variables (data in the PPE memory).

The ea.h implements the following:

Memory mapping functions

__ea void *mmap_ea (__ea void *start, size_ea_t length, int prot, int flags, int fd, off_t offset);

int munmap_ea (__ea void *start, size_ea_t length);

__ea void *mremap_ea (__ea void *old_address, size_ea_t old_size, size_ea_t new_size, unsigned long flags);

int msync_ea (__ea void *start, size_ea_t length, int flags);

EA memory management functions

__ea void *calloc_ea (size_ea_t nmemb, size_ea_t length);

void free_ea (__ea void *ptr);

__ea void *malloc_ea (size_ea_t size);

__ea void *realloc_ea (__ea void *ptr, size_ea_t size);

int posix_memalign_ea (__ea void **memptr, size_ea_t alignment, size_ea_t size);

String copying functions

__ea void *memcpy_ea (__ea void *dest, __ea const void *src, size_ea_t n);

__ea void *memmove_ea (__ea void *dest, __ea const void *src, size_ea_t n);

__ea char *strcpy_ea (__ea char *dest, __ea const char *src);

__ea char *strncpy_ea (__ea char *dest, __ea const char *src, size_ea_t n);

Concatenation functions

__ea char *strcat_ea (__ea char *dest, __ea const char *src);

__ea char *strncat_ea (__ea char *dest, __ea const char *src, size_ea_t n);

Comparison functions

int memcmp_ea (__ea void *s1, __ea const void *s2, size_ea_t n);

int strcmp_ea (__ea char *s1, __ea const char *s2);

int strncmp_ea (__ea void *s1, __ea const void *s2, size_ea_t n3);

Search functions

__ea void *memchr_ea (__ea const void *s, int c, size_ea_t n);

__ea char *strchr_ea (__ea const char *s, int c);

size_ea_t strcspn_ea (__ea const char *s, const char *reject);

__ea char *strpbrk_ea (__ea const char *s, const char *accept);

20 SPU Runtime Library Extensions Guide

__ea char *strrchr_ea (__ea const char *s, int c);

size_ea_t strspn_ea (__ea const char *s, const char *accept);

__ea char * strstr_ea (__ea const char *s1, __ea const char *s2);

Miscellaneous functions

__ea void *memset_ea (__ea void *dest, int c, size_ea_t n);

size_ea_t strlen_ea (__ea const char *s);

Linux system call functions

ssize_ea_t read_ea(int fd, __ea void *buf, size_ea_t count);

ssize_ea_t pread_ea(int fd, __ea void *buf, size_ea_t count, off_t offset);

ssize_ea_t readv_ea(int fd, struct iovec_ea *vector, int count);

ssize_ea_t write_ea(int fd, __ea const void *buf, size_ea_t count);

ssize_ea_t pwrite_ea(int fd, __ea const void *buf, size_ea_t count, off_t offset);

ssize_ea_t writev_ea(int fd, struct iovec_ea *vector, int count);

Type definitions

ea.h defines the following types:

size_ea_t

ssize_ea_t

key_ea_t

iovec_ea

Chapter 6. Programming with the EA library APIs 21

22 SPU Runtime Library Extensions Guide

Part 3. APIs

This topic describes the APIs.

© Copyright IBM Corp. 2008 23

24 SPU Runtime Library Extensions Guide

Chapter 7. SPU timer library APIs

This section provides information about the SPU timer library APIs.

The following APIs are described:

v “spu_clock_start” on page 26

v “spu_clock_stop” on page 27

v “spu_clock_read” on page 28

v “spu_timer_alloc” on page 29

v “spu_timer_free” on page 30

v “spu_timer_start” on page 31

v “spu_timer_stop” on page 32

v “spu_slih_register” on page 33

v “spu_slih_register” on page 33

v “spu_clock_slih” on page 34

v “spu_timebase” on page 35

© Copyright IBM Corp. 2008 25

spu_clock_start

NAME

spu_clock_start - Starts the SPU clock.

SYNOPSIS

#include <spu_timer.h>

void spu_clock_start (void)

DESCRIPTION

Starts the SPU clock. After the clock has been started, it is read using

spu_clock_read() and timer services may be used. The clock SLIH

(spu_clock_slih()) must be registered before starting the clock. The behavior is

undefined if the clock is started without having registered the SLIH.

Because the SPU clock might be used by applications and libraries without

knowledge of each other, the state of the clock must be coordinated among

potentially several users. For this reason, the SPU clock maintains and internal

start count, to ensure that one requester cannot stop the clock while it is in use by

another. This count is incremented on start requests and decremented on stop

requests.

Attempts to stop the clock when the count is non-zero will result in a non zero

return code. This return code means that someone else is using the clock and is not

considered a failure. The clock value is reset to zero whenever it is (re)started.

SEE ALSO

spu_clock_read(3); spu_clock_stop(3)

26 SPU Runtime Library Extensions Guide

spu_clock_stop

NAME

spu_clock_stop - Stops the SPU clock.

SYNOPSIS

#include <spu_timer.h>

int spu_clock_stop (void)

DESCRIPTION

Stops the SPU clock. After the clock stops, spu_clock_read() returns zero, and the

spu_timer_start() and spu_timer_stop() services fail.

This service decrements the start count of the clock and stops it if the count

becomes zero. If the count was decremented, but the clock was not stopped, it

returns an error code to indicate this. If the start count is one and there are active

timers, the service fails.

RETURN VALUES

Returns 0 if the clock was successfully stopped.

Returns one of the following error codes upon error:

 SPU_CLOCK_ERR_NOT_RUNNING The clock is not running

SPU_CLOCK_ERR_STILL_RUNNING The clock start count was decremented but

the clock was not stopped

SPU_CLOCK_ERR_TIMERS_ACTIVE The clock was not stopped because there are

active timers

SEE ALSO

spu_clock_read(3); spu_clock_start(3)

Chapter 7. SPU timer library APIs 27

spu_clock_read

NAME

spu_clock_read - Reads the SPU clock.

SYNOPSIS

#include <spu_timer.h>

uint64_t spu_clock_read (void)

DESCRIPTION

Reads the SPU clock. Returns the elapsed time since the start of the clock in Time

Base units. The clock can be read any time after it is started. This service returns

zero when the clock is not running.

RETURN VALUES

Returns 0 if the clock is either not running or is running and has not yet ticked, or

else the non-zero clock value.

SEE ALSO

spu_clock_start(3); spu_clock_stop(3)

28 SPU Runtime Library Extensions Guide

spu_timer_alloc

NAME

spu_timer_alloc - Allocates an SPU timer.

SYNOPSIS

#include <spu_timer.h>

int spu_timer_alloc (int tb_intvl, void (*handler)(int))

PARAMETERS

 tb_intvl The number of timebase units for the

timer expiration interval. Can be any

positive integer between 1 and

INT_MAX. The recommended

minimum is 1 microsecond or 100 tics.

handler Pointer to the expiration handler to be

called on each interval. The ID of the

expired timer is passed to the handler.

DESCRIPTION

Allocates a new timer. The newly allocated timer remains inactive until started by

a call to spu_timer_start(). The timer remains allocated until freed by a call to

spu_timer_free(). The clock does not need to be running to allocate a timer.

RETURN VALUES

Upon success, returns the timer ID of the new timer. Valid timer IDs are in the

range 0 – (SPU_TIMER_NTIMERS – 1).

Upon failure, returns one of the following error codes:

 SPU_TIMER_ERR_INVALID_PARM tb_intvl was out of range or handler was

NULL

SPU_TIMER_ERR_NONE_FREE There are no free timers to allocate

Chapter 7. SPU timer library APIs 29

spu_timer_free

NAME

spu_timer_free - Frees an SPU timer.

SYNOPSIS

#include <spu_timer.h>

int spu_timer_free (int id)

PARAMETERS

 id The ID of the timer to free.

DESCRIPTION

Frees an allocated timer. This service fails if the specified timer is currently active.

This service can be called successfully before a timer is started, after it is stopped,

from application code or from the timer’s handler. After a timer is freed, no further

operations on it are permitted. The clock does not need to be running to free a

timer.

RETURN VALUES

Returns 0 upon success. Valid timer IDs are in the range 0 - (SPU TIMER

NTIMERS - 1).

Returns one of the following error codes upon failure:

 SPU_TIMER_ERR_INVALID_ID id does not refer to a valid timer id

SPU_TIMER_ERR_ACTIVE id refers to an active timer

SPU_TIMER_ERR_FREE id refers to an already free timer

SEE ALSO

spu_timer_alloc(3)

30 SPU Runtime Library Extensions Guide

spu_timer_start

NAME

spu_timer_start - Starts an SPU timer.

SYNOPSIS

#include <spu_timer.h>

int spu_timer_start (int id)

PARAMETERS

 id The ID of the timer to start.

DESCRIPTION

Starts the specified timer. When started, a timer remains active until it is stopped.

While active, the timer’s expiration handler is called on each interval.

RETURN VALUES

Returns 0 upon success. Valid timer IDs are in the range 0 - (SPU TIMER

NTIMERS - 1).

Returns one of the following error codes upon failure:

 SPU_TIMER_ERR_INVALID_ID id does not refer to a valid timer ID

SPU_TIMER_ERR_NOT_STOPPED id does not refer to a stopped timer

SPU_TIMER_ERR_NOCLOCK The SPU clock is not running

SEE ALSO

spu_timer_alloc(3); spu_timer_stop(3)

Chapter 7. SPU timer library APIs 31

spu_timer_stop

NAME

spu_timer_stop - Stops an SPU timer.

SYNOPSIS

#include <spu_timer.h>

int_spu_timer_start (int id)

PARAMETERS

 id The ID of the timer to stop.

DESCRIPTION

Stops the specified timer. The timer is put into the stopped state where it remains

until it is either restarted or freed.

RETURN VALUES

Returns 0 upon success. Valid timer IDs are in the range 0 - (SPU TIMER

NTIMERS - 1).

Returns one of the following error codes upon failure:

 SPU_TIMER_ERR_INVALID_ID id does not refer to a valid timer id

SPU_TIMER_ERR_NOT_ACTIVE id does not refer to an inactive timer

SPU_TIMER_ERR_NOCLOCK The SPU clock is not running.

32 SPU Runtime Library Extensions Guide

spu_slih_register

NAME

spu_slih_register - Registers a second level interrupt handler.

SYNOPSIS

#include <spu_timer.h>

void spu_slih_register (unsigned event_mask, unsigned (*slih)(unsigned))

PARAMETERS

 event_mask The set of events for which to call the

registered handler.

handler The pointer to the function to use as

the second-level interrupt handler.

DESCRIPTION

Register a second-level interrupt handler for the given events. The handler is called

for the events specified in the mask. The values for the event mask can be found in

spu_mfcio.h. If the slih value is NULL then the original default slih handler will be

restored.

For library initialization, spu_clock_slih should be registered as the handler for

the MFC_DECREMENTER_EVENT, using this service. To restore the original slih

handler pass in a value of NULL for the slih. The original default slih only resets

the interrupt, the spu clock slih must be registered for the handlers to be invoked.

SEE ALSO

spu_clock_slih(3)

Chapter 7. SPU timer library APIs 33

spu_clock_slih

NAME

spu_clock_slih - Second level interrupt handler for SPU clock.

SYNOPSIS

#include <spu_timer.h>

unsigned spu_clock_slih (unsigned event_mask)

PARAMETERS

 event_mask The list of pending events at the time

of the call.

DESCRIPTION

The second-level interrupt handler for the clock and timer services. This needs to

be registered as the handler for the MFC_DECREMENTER_EVENT before starting

the SPU clock. It can be registered using the provided spu_slih_register() service

or by a user-provided service. If registered using a service other than that provided

by the library, it is the application’s responsibility to also provide the first-level

interrupt handler to call it as appropriate.

RETURN VALUE

Returns the event_mask value that was passed in, with the

MFC_DECREMENTER_EVENT cleared and the decrementer restarted.

34 SPU Runtime Library Extensions Guide

spu_timebase

NAME

spu_timebase - Returns the SPU time base in hertz.

SYNOPSIS

#include <spu_timer.h>

unsigned spu_timebase (void);

DESCRIPTION

This function queries /proc/cpuinfo and returns the SPU time base in hertz. The

time base varies on different hardware platforms. You can use this function to set

up a timer that triggers your code with the same frequency on all hardware

platforms.

Chapter 7. SPU timer library APIs 35

36 SPU Runtime Library Extensions Guide

Part 4. Appendixes

© Copyright IBM Corp. 2008 37

38 SPU Runtime Library Extensions Guide

Appendix A. SPU constants

The header file for the SPU timer library defines the following constants:

 Table 3. Timer constants

SPU_TIMER_NTIMERS The number of timers that may be allocated.

SPU_TIMER_MIN_INTERVAL Recommended minimum SPU Timer interval

time.

 Table 4. Clock error codes

SPU_CLOCK_ERR_NOT_RUNNING The clock is not running

SPU_CLOCK_ERR_STILL_RUNNING The clock start count was decremented but

the clock was not stopped.

SPU_CLOCK_ERR_TIMERS_ACTIVE The clock was not stopped because there are

active timers.

 Table 5. Timer error codes

SPU_TIMER_ERR_INVALID_PARM Invalid parameter

SPU_TIMER_ERR_NONE_FREE There are no free timers to allocate

SPU_TIMER_ERR_INVALID_ID Invalid timer ID

SPU_TIMER_ERR_ACTIVE Specified timer is active

SPU_TIMER_ERR_NOT_ACTIVE Specified timer is not active

SPU_TIMER_ERR_NOCLOCK Clock is not running

SPU_TIMER_ERR_FREE Specified timer is free

SPU_TIMER_ERR_NOT_STOPPED Specified timer is not stopped

© Copyright IBM Corp. 2008 39

40 SPU Runtime Library Extensions Guide

Appendix B. Example: programming with the SPU timer

library

Profile sample code for SPU timer library.

This sample demonstrates using the SPU timer APIs for profiling. This sample

consists of 2 files, prof_test.c and sprof.h. The file prof_test.c is shown first and

includes the file sprof.h. The file sprof.h contains the profiling logic. This makes it

easy to add profiling to an existing SPU program.

#include "sprof.h"

int

main()

{

 int i = 0,z=0;

 sprof_enable(14318);

 while (++i < 1000000) {

 unsigned was_enabled;

 was_enabled = spu_readch(SPU_RdMachStat);

 int y = i+1;

 z = y/i + y%i;

 }

 sprof_disable();

 sprof_dump();

 return z;

}

/* sprof.h

 *

 * Copyright (C) 2008 IBM Corp.

 *

 * Simple profile & hot-spot tracking

 * for SPE.

 */

#ifndef __SPROF_H__

#define __SPROF_H__

#include <stdio>

#include <spu_intrinsics_h>

#include <asset.h>

#include <spu.timer.h>

volatile unsigned int event_count = 0;

#define SPU_RDCH_INSTR 0x01a00000

#define SPU_WRCH_INSTR 0x21a00000

#define SPU_INSTR_MASK 0xfff00000

volatile unsigned int sprof_rdch_cntr __attribute ((aligned (16))) = 0;

volatile unsigned int sprof_wrch_cntr __attribute ((aligned (16))) = 0;

volatile unsigned int sprof_misc_cntr __attribute ((aligned (16))) = 0;

#if 0

#define PROF_TABLE_SHIFT 13

#define PROF_TABLE_SZ (1 << PROF_TABLE_SHIFT)

#define PROF_TABLE_MASK (PROF_TABLE_SZ - 1)

#else

© Copyright IBM Corp. 2008 41

#define PROF_TABLE_SHIFT 10

#define PROF_TABLE_SZ (1 << PROF_TABLE_SHIFT)

#define PROF_TABLE_MASK (PROF_TABLE_SZ - 1)

#endif

volatile unsigned int sprof_tagid_table[32];

volatile unsigned int sprof_ch_table[32];

volatile unsigned int sprof_ticks = 0;

static inline unsigned int

sprof_hash (unsigned int npc)

{

 // instructions are

 // always word addressable.

 //return (npc >> 9) & PROF_TABLE_MASK;

 return ((npc >> 8) & PROF_TABLE_MASK);

}

static void

sprof_tick (int id __attribute__ ((unused)))

{

 unsigned int npc = spu_readch (SPU_RdSRR0);

 unsigned int tagmask = spu_readch (MFC_RdTagMask);

 unsigned int *npc_ptr = (unsigned int *) npc;

 unsigned int instr = *npc_ptr & SPU_INSTR_MASK;

 unsigned int ch = (*npc_ptr >> 7) & 0x1f;

 unsigned int r = sprof_rdch_cntr;

 unsigned int w = sprof_wrch_cntr;

 unsigned int m = sprof_misc_cntr;

 unsigned int r1 = r + 1;

 unsigned int w1 = w + 1;

 unsigned int m1 = m + 1;

 unsigned int rdch = (instr == SPU_RDCH_INSTR);

 unsigned int wrch = (instr == SPU_WRCH_INSTR);

 unsigned int misc = (!(rdch || wrch));

 int i;

 sprof_ticks += 1;

 sprof_rdch_cntr = (rdch) ? r1 : r;

 sprof_wrch_cntr = (wrch) ? w1 : w;

 sprof_misc_cntr = (misc) ? m1 : m;

 if (rdch & (ch == 24))

 {

 for (i = 0; i < 32; i++)

 {

 if (tagmask & (1 << i))

 sprof_tagid_table[i] += 1;

 }

 }

 if (rdch | wrch)

 {

 /* ISA reserves 7b but only 5b are generally used. */

 sprof_ch_table[ch] += 1;

 }

}

int sprof_hz;

42 SPU Runtime Library Extensions Guide

static void

sprof_dump (void)

{

 float percent_rdch =

 ((float) sprof_rdch_cntr / (float) sprof_ticks) * 100.0f;

 float percent_wrch =

 ((float) sprof_wrch_cntr / (float) sprof_ticks) * 100.0f;

 float percent_misc =

 ((float) sprof_misc_cntr / (float) sprof_ticks) * 100.0f;

 int i;

 printf ("\n");

 printf ("SPU Hot-Spot Dump.\n");

 printf (" Profile frequency (HZ): %10d\n", sprof_hz);

 printf (" Total ticks: %10d\n", sprof_ticks);

 printf (" Ticks for rdch: %10d\t (%2.2f %%)\n",

 sprof_rdch_cntr, percent_rdch);

 printf (" Ticks for wrch: %10d\t (%2.2f %%)\n",

 sprof_wrch_cntr, percent_wrch);

 printf (" Ticks for compute: %10d\t (%2.2f %%)\n",

 sprof_misc_cntr, percent_misc);

 printf ("\n");

 printf("\n");

 printf (" Ticks by channel id:\n");

 printf (" ticks\t %%\t CH\n");

 printf (" ==========\t ==========\t ==========\n");

 for (i = 0; i < 32; i++)

 {

 if (sprof_ch_table[i])

 {

 float ratio = (float) sprof_ch_table[i] / (float) sprof_ticks;

 printf (" %10d\t %10.2f\t %10d\n",

 sprof_ch_table[i], ratio * 100.0f, i);

 }

 }

 printf("\n");

 printf("\n");

 printf (" Ticks by tag group id:\n");

 printf (" ticks\t %%\t tagid\n");

 printf (" ==========\t ==========\t ==========\n");

 for (i = 0; i < 32; i++)

 {

 if (sprof_tagid_table[i])

 {

 float ratio = (float) sprof_tagid_table[i] / (float) sprof_ticks;

 printf (" %10d\t %10.2f\t %10d\n",

 sprof_tagid_table[i], ratio * 100.0f, i);

 }

 }

 printf("\n");

 printf("\n");

}

static unsigned sprof_timerid;

static inline void

sprof_enable (int hz)

{

 int i;

 for (i = 0; i < 32; i++)

Appendix B. Example: programming with the SPU timer library 43

{

 sprof_tagid_table[i] = 0;

 }

 /* just for summary reporting */

 sprof_hz = hz;

 spu_slih_register(MFC_DECREMENTER_EVENT, spu_clock_slih);

 /* start the virtual clock */

 spu_clock_start ();

 /* alloc/start our profiling timer */

 sprof_timerid = spu_timer_alloc (hz, sprof_tick);

 assert ((int)sprof_timerid != -1);

 spu_timer_start (sprof_timerid);

}

static inline void

sprof_disable (void)

{

 spu_timer_stop (sprof_timerid);

 spu_timer_free (sprof_timerid);

 spu_clock_stop ();

}

#endif

44 SPU Runtime Library Extensions Guide

Appendix C. Example: programming with the EA library

The following code shows how to program with the EA library APIs

#include <ea.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#define FILE_NAME "/tmp/ea_example"

int

main ()

{

 int fd = 0;

 int i;

 char s[] = "hello world\n";

 __ea char *buf;

 /* Allocate PPE memory. */

 buf = (char *) malloc_ea (strlen (s));

 /* Fill buf with our local char array using the __ea cache. */

 for (i = 0; i < strlen (s); ++i)

 buf[i] = s[i];

 /* Write the data of buf into a file. */

 fd = open (FILE_NAME, O_WRONLY | O_CREAT | O_TRUNC, 0644);

 write_ea (fd, (__ea void *) buf, strlen (s));

 close (fd);

 free_ea (buf);

 return 0;

}

© Copyright IBM Corp. 2008 45

46 SPU Runtime Library Extensions Guide

Appendix D. Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the IBM® developerWorks®

Web site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Broadband Engine Programmer’s Guide and

API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Data Communication and Synchronization for Cell Broadband Engine Programmer’s

Guide and API Reference

v Example Library API Reference

v Fast Fourier Transform Library Programmer’s Guide and API Reference

v LAPACK (Linear Algebra Package) Programmer’s Guide and API Reference

v Mathematical Acceleration Subsystem (MASS)

v Monte Carlo Library Programmer’s Guide and API Reference

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Runtime Extensions Library Programmer’s Guide and API Reference

© Copyright IBM Corp. 2008 47

http://www.ibm.com/developerworks/power/cell/

v Three dimensional FFT Prototype Library Programmer’s Guide and API Reference

Installation

v SDK for Multicore Acceleration Version 3.1 Installation Guide

Tools

v Getting Started - XL C/C++ for Multicore Acceleration for Linux

v Compiler Reference - XL C/C++ for Multicore Acceleration for Linux

v Language Reference - XL C/C++ for Multicore Acceleration for Linux

v Programming Guide - XL C/C++ for Multicore Acceleration for Linux

v Installation Guide - XL C/C++ for Multicore Acceleration for Linux

v Getting Started - XL Fortran for Multicore Acceleration for Linux

v Compiler Reference - XL Fortran for Multicore Acceleration for Linux

v Language Reference - XL Fortran for Multicore Acceleration for Linux

v Optimization and Programming Guide - XL Fortran for Multicore Acceleration for

Linux

v Installation Guide - XL Fortran for Multicore Acceleration for Linux

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

IBM PowerPC Base

v IBM PowerPC Architecture™ Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v IBM PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

48 SPU Runtime Library Extensions Guide

Appendix E. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully. The

following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2008 49

http://www.ibm.com/able/

50 SPU Runtime Library Extensions Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 51

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester; MIN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

52 SPU Runtime Library Extensions Guide

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corporation in the United States, other countries,

or both. These and other IBM trademarked terms are marked on their first

occurrence in this information with the appropriate symbol (® or

™), indicating US

registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law

trademarks in other countries. A complete and current list of IBM trademarks is

available on the Web at http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based

trademarks are either registered trademarks or trademarks of Adobe Systems

Incorporated in the United States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc., in

the United States, other countries, or both and is used under license therefrom

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Terms and conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal Use: You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are preserved. You may

not distribute, display or make derivative works of these publications, or any

portion thereof, without the express consent of the manufacturer.

Commercial Use: You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these publications, or reproduce, distribute

or display these publications or any portion thereof outside your enterprise,

without the express consent of the manufacturer.

Notices 53

http://www.ibm.com/legal/copytrade.shtml

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the publications or any data,

software or other intellectual property contained therein.

The manufacturer reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is detrimental to its interest

or, as determined by the manufacturer, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

THE MANUFACTURER MAKES NO GUARANTEE ABOUT THE CONTENT OF

THESE PUBLICATIONS. THESE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A

PARTICULAR PURPOSE.

54 SPU Runtime Library Extensions Guide

Index

A
API

spu_clock_read 28

spu_clock_slih 34

spu_clock_start 26

spu_clock_stop 27

spu_slih_register 33

spu_timebase 35

spu_timer_alloc 29

spu_timer_free 30

spu_timer_start 31

spu_timer_stop 32

C
constants

SPU timer library 39

D
documentation 47

related v

E
EA library

example 45

installing 17

packages 17

programming 19

L
libraries

SPU timer 3

library
clock 7

timer 7

N
nr_ret 19

P
parm 19

PPE
address space support 15

programming
EA library 19

S
sample code

EA library 45

SPU timer library 41

SDK documentation 47

SPE
address space support on 15

SPU
timer library 3

SPU timer library 3

clock 7

constants 39

installing 5

packages 5

sample code 41

spu_clock_read 7

spu_clock_start 7

timer 7

spu_clock_read 28

spu_clock_slih 34

spu_clock_start 26

spu_clock_stop 27

spu_slih_register 33

spu_syscall_block 19

spu_timebase 35

spu_timer_alloc 29

spu_timer_free 30

spu_timer_start 31

spu_timer_stop 32

sys/linux_syscalls.h 19

system call function 19

© Copyright IBM Corp. 2008 55

56 SPU Runtime Library Extensions Guide

����

Printed in USA

SC34-2593-00

	Contents
	About this publication
	How to send your comments

	Part 1. SPU timer library
	Chapter 1. Overview of the SPU timer library
	Chapter 2. Installing the SPU timer library
	Chapter 3. Programming with the SPU timer library
	Part 2. EA library
	Chapter 4. The _ea address space qualifier language extension
	The _ea address space qualifier language extension implementation in GCC

	Chapter 5. Installing the EA library APIs
	Chapter 6. Programming with the EA library APIs
	PPU Linux system calls
	Support for PPE address space on the SPE

	Part 3. APIs
	Chapter 7. SPU timer library APIs
	spu_clock_start
	spu_clock_stop
	spu_clock_read
	spu_timer_alloc
	spu_timer_free
	spu_timer_start
	spu_timer_stop
	spu_slih_register
	spu_clock_slih
	spu_timebase

	Part 4. Appendixes
	Appendix A. SPU constants
	Appendix B. Example: programming with the SPU timer library
	Appendix C. Example: programming with the EA library
	Appendix D. Related documentation
	Appendix E. Accessibility features
	Notices
	Trademarks
	Terms and conditions

	Index

