
CBEA JSRE Series

Cell Broadband Engine Architecture Joint Software

Reference Environment Series

SPE Runtime Management Library

Version 2.2

SC33-8334-01

���

CBEA JSRE Series

Cell Broadband Engine Architecture Joint Software

Reference Environment Series

SPE Runtime Management Library

Version 2.2

SC33-8334-01

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 99.

Edition Notice

This edition applies to the SPE Runtime Management Library Version 2.2 and to all subsequent releases and

modifications until otherwise indicated in new editions.

This edition replaces SC33-8334-00.

2002, 2007 © Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated,

Toshiba Corporation

Preface

About this book

This document describes the SPE Runtime Management Library. This library

constitutes the standardized low-level application programming interface for

application access to the Cell Broadband Engine™ (Cell BE™) Synergistic Processing

Elements (SPEs).

Who should read this book

The document is intended for system and application programmers who wish to

develop Cell BE. applications that fully exploit the SPEs.

Prerequisites

This document and the use of the library assumes and requires that you are

familiar with the Cell BE. architecture as described in Cell Broadband Engine

Architecture.

New in this release

This section describes significant changes made to the SPE Runtime Management

Library specification for each version of this document.

 Version number and date Changes

Version 2.0 November, 2006 New library version (previous version was

1.2)

Version 2.1 March, 2007 New functions:

v spe_create_context_affinity

v spe_cpu_info_get

v spe_callback_handler_query

Version 2.2 September, 2007 New functions:

v spe_mssync_start

v spe_mssync_status

Other documentation

The following is a list of reference and supporting materials for the SPE Runtime

Management Library specification:

v Cell Broadband Engine Architectur

v Cell Broadband Engine Programming Handbook

v C/C++ Language Extensions for Cell Broadband Engine Architecture

For a full list of documentation, see Appendix C, “Related documentation,” on

page 95.

 iii

iv CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Contents

Preface iii

Chapter 1. Overview 1

Chapter 2. SPE context creation 5

SPE context creation functions 5

spe_context_create 6

spe_context_destroy 8

spe_gang_context_create 9

spe_gang_context_destroy 10

spe_context_create_affinity 11

Chapter 3. CPU information 15

spe_cpu_info_get 16

Chapter 4. SPE program image

handling 19

SPE image functions 19

spe_image_open 20

spe_image_close 22

spe_program_load 23

Chapter 5. SPE run control 25

SPE run functions 25

spe_context_run 26

spe_stop_info_read 31

Chapter 6. SPE event handling 33

SPE event functions 33

spe_event_handler_create 34

spe_event_handler_destroy 35

spe_event_handler_deregister 36

spe_event_handler_register 38

spe_event_wait 40

Chapter 7. SPE MFC problem state

facilities 41

SPE MFC proxy command functions 42

spe_mfcio_put 43

spe_mfcio_putb 45

spe_mfcio_putf 47

spe_mfcio_get 49

spe_mfcio_getb 51

spe_mfcio_getf 53

SPE MFC multi-source synchronization functions . . 55

spe_mssync_start 56

spe_mssync_status 57

SPE MFC proxy tag-group completion functions . . 58

spe_mfcio_tag_status_read 59

SPE mailbox functions 61

spe_out_mbox_read 62

spe_out_mbox_status 63

spe_in_mbox_write 64

spe_in_mbox_status 66

spe_out_intr_mbox_read 67

spe_out_intr_mbox_status 69

SPE SPU signal notification functions 70

spe_signal_write 71

Chapter 8. Direct SPE access for

applications 73

Direct access functions 74

spe_ls_area_get 75

spe_ls_size_get 76

spe_ps_area_get 77

Chapter 9. PPE-assisted library

facilities 81

PPE-assisted library functions 82

spe_callback_handler_register 83

spe_callback_handler_deregister 85

spe_callback_handler_query 86

Appendix A. Data structures 87

Appendix B. Symbolic constants . . . 91

Appendix C. Related documentation . . 95

Appendix D. Accessibility features . . . 97

Notices 99

Trademarks 101

Glossary 103

Index 105

 v

vi CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 1. Overview

The SPE Runtime Management Library (libspe) is the standardized low-level

application programming interface (API) that enables application access to the Cell

BE SPEs. This library provides an API that is neutral with respect to the

underlying operating system and its methods to manage SPEs.

Implementations of libspe can provide additional functionality that enables access

to operating system or implementation-dependent aspects of SPE runtime

management.

Note: This functionality is not subject to standardization in this document and its

use can lead to non-portable code and dependencies on certain implemented

versions of the library.

In general, applications do not have control over the physical SPE system

resources. The operating system manages these resources. Applications manage

and use software constructs called SPE contexts. These SPE contexts are a logical

representation of an SPE and are the base object on which libspe operates. The

operating system schedules SPE contexts from all running applications onto the

physical SPE resources in the system for execution according to the scheduling

priorities and policies associated with the runable SPE contexts.

libspe also provides the means for communication and data transfer between PPE

threads and SPEs.

The basic scheme for a simple application using an SPE is as follows:

1. Create an SPE context.

2. Load an SPE executable object into the SPE context local store.

3. Run the SPE context. This transfers control to the operating system, which

requests the actual scheduling of the context onto a physical SPE in the system.

4. Destroy the SPE context.

Note: Step 3 represents a synchronous call to the operating system. The calling

application blocks until the SPE stops executing and the operating system returns

from the system call that invoked the SPE execution.

Using multiple SPEs concurrently

Many applications need to use multiple SPEs concurrently. In this case, the

application must create at least as many threads as concurrent SPE contexts are

required. Each of these threads may run a single SPE context at a time. If N

concurrent SPE contexts are needed, it is common to have a main application

thread plus N threads dedicated to SPE context execution.

The basic scheme for a simple application running N SPE contexts is as follows:

1. Create N SPE contexts.

2. Load the appropriate SPE executable object into each SPE context’s local store.

3. Create N threads:

a. In each of these threads run one of the SPE contexts.

b. Stop thread.

 1

4. Wait for all N threads to stop.

5. Destroy all N SPE contexts.

Other schemes are also possible and, depending on the application, potentially

more suitable.

PPE functions

To provide this functionality, libspe consists of the following sets of PPE

(PowerPC® Processing Element) functions to:

v Create and destroy SPE and gang contexts

v Load SPE objects into SPE local store memory for execution

v Start the execution of SPE programs and to obtain information about reasons

why an SPE has stopped running

v Receive asynchronous events generated by an SPE

v Access the MFC (Memory Flow Control) problem state facilities, which includes:

– MFC proxy command issue

– MFC proxy tag-group completion facility

– Mailbox facility

– SPE signal notification facility
v Enable direct application access to an SPE’s local store and problem state areas

v Register PPE-assisted library calls for an SPE program

Terminology

Library Name(s)

libspe2

Header File(s)

<libspe2.h>

For a full list of terms, see “Glossary” on page 103

Example

The following example shows how to load and run a simple SPE executable

″hello″.

Example 1: Run the simple SPE program ″hello″

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include "libspe2.h"

int main(void)

{

 spe_context_ptr_t ctx;

 int flags = 0;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 void * argp = NULL;

 void * envp = NULL;

 spe_program_handle_t * program;

 spe_stop_info_t stop_info;

 int rc;

 program = spe_image_open("hello");

 if (!program) {

2 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

perror("spe_open_image");

 return -1;

 }

 ctx = spe_context_create(flags, NULL);

 if (ctx == NULL) {

 perror("spe_context_create");

 return -2;

 }

 if (spe_program_load(ctx, program)) {

 perror("spe_program_load");

 return -3;

 }

 rc = spe_context_run(ctx, &entry, 0, argp, envp, &stop_info);

 if (rc < 0)

 perror("spe_context_run");

 spe_context_destroy(ctx);

 return 0;

}

The following simple multi-threaded example shows how an application can run

the SPE program ″hello″ on multiple SPEs concurrently:

Example 2: Simple multi-threaded example

#include <stdlib.h>

#include <pthread.h>

#include "libspe2.h"

struct thread_args {

 struct spe_context * ctx;

 void * argp;

 void * envp;

};

void * spe_thread(void * arg)

{

 int flags = 0;

 unsigned int entry = SPE_DEFAULT_ENTRY;

 spe_program_handle_t * program;

 struct thread_args * arg_ptr;

 arg_ptr = (struct thread_args *) arg;

 program = spe_image_open("hello");

 spe_program_load(arg_ptr->ctx, program);

 spe_context_run(arg_ptr->ctx, &entry, flags, arg_ptr->argp,

 arg_ptr->envp, NULL);

 pthread_exit(NULL);

}

int main() {

 int thread_id;

 pthread_t pts;

 spe_context_ptr_t ctx;

 struct thread_args t_args;

 int value = 1;

 ctx = spe_context_create(0, NULL);

 t_args.ctx = ctx;

 t_args.argp = &value;

 thread_id = pthread_create(&pts, NULL, &spe_thread, &t_args);

Chapter 1. Overview 3

pthread_join (pts, NULL);

 spe_context_destroy (ctx);

 return 0;

}

4 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 2. SPE context creation

The SPE context is one of the base data structures for the libspe implementation. It

holds all persistent information about a ″logical SPE″ used by the application. This

data structure should only be accessed through libspe API calls, and should not be

accessed directly.

Before being able to use an SPE, the SPE context data structure has to be created

and initialized. This is done by calling the function spe_context_create.

When an application no longer needs a specific SPE context, it should call the

function spe_context_destroy to release all associated resources and free the

memory used by the SPE context data structure.

The SPE gang context is another of the base data structures for the libspe

implementation. It holds all persistent information about a group of SPE contexts

that should be treated as a gang, that is, be executed together with certain

properties. This data structure should only be accessed through libspe API calls,

and should not be accessed directly.

Before being able to use an SPE gang context, that is, before calling

spe_context_create to add SPE contexts as members to the gang, the SPE gang

context data structure must be created and initialized. This is done by calling the

function spe_gang_context_create.

When an application no longer needs a specific SPE gang context, it should release

all associated resources and free the memory used by the SPE context data

structure. It does this by first calling spe_context_destroy to destroy all SPE

contexts associated with the gang by on each of them and then calling the function

spe_gang_context_destroy.

SPE-SPE affinity is always specified in affinity pairs. The function

spe_context_create_affinity specifies SPE affinity. This function allows an SPE

context to be created and placed next to another previously created SPE context.

The SPUFS scheduler honors this relationship by scheduling the SPE contexts on

physically adjacent SPUs. This routine can be used to create a chain of SPE

contexts that consumes all of the SPU resources on a Cell BE. If you want to use

additional SPU resources, you must create a separate gang for that purpose.

SPE context creation functions

The following describe the SPE context creation functions.

 5

spe_context_create

NAME

spe_context_create - Create a new SPE context.

SYNOPSIS

#include <libspe2.h>

spe_context_ptr_t spe_context_create(unsigned int flags, spe_gang_context_ptr_t

gang)

 Parameters

flags A bit-wise OR of modifiers that are applied

when the SPE context is created. See Usage.

gang Associate the new SPE context with this gang

context. If NULL is specified, the new SPE

context is not associated with any gang.

RETURN VALUE

On success, a pointer to the newly created SPE context is returned.

EXIT STATUS

On error, NULL is returned and errno is set to indicate the error.

Possible errors include:

 ENOMEM The SPE context could not be allocated due

to lack of system resources.

EINVAL The value passed for flags was invalid.

EPERM The process does not have permission to

add threads to the designated SPE gang

context, or to use the SPU_MAP_PS setting.

ESRCH The gang context could not be found.

EFAULT A runtime error of the underlying operating

system service occurred.

ENODEV An isolated SPE context has been requested

but the system is not isolation-enabled.

OPTIONS

The following values are accepted for the flags parameter:

 SPE_EVENTS_ENABLE Enable event handling on this SPE context

SPE_CFG_SIGNOTIFY1_OR Configure the SPU Signal Notification 1

Register to be in ″logical OR″ mode instead

of the default ″Overwrite″ mode. See Cell

Broadband Engine Architecture, SPU Signal

Notification Facility.

6 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

SPE_CFG_SIGNOTIFY2_OR Configure the SPU Signal Notification 2

Register to be in ″logical OR″ mode instead

of the default ″Overwrite″ mode. See Cell

Broadband Engine Architecture, SPU Signal

Notification Facility.

SPE_MAP_PS Request permission for memory-mapped

access to the SPE’s problem state area(s). See

Cell Broadband Engine Architecture, Problem

State Memory-Mapped Registers.

SPE_ISOLATED This context executes on an SPU in the

isolation mode. Programs loaded into

contexts flagged with SPE_ISOLATED must

be be correctly formatted for isolated

execution.

SPE_ISOLATED_EMULATE Run this context on an SPU in an emulated

isolation mode. This mode provides

emulation of an isolated SPU without truly

being isolated as is intended for use by

developers who need access to debug tools

during the development of their isolated

applications. Programs loaded into contexts

flagged with SPE_ISOLATED_EMULATE

must be correctly formatted for isolated

emulation execution.

Note: (Linux) Proper operation of a PPE

assisted function call assumes the use of the

ISOLATED version of the SPE library

functions.

SEE ALSO

spe_context_destroy(3); spe_gang_context_create(3)

Cell Broadband Engine Architecture, SPU Signal Notification Facility

Cell Broadband Engine Architecture, Problem State Memory-Mapped Registers

Chapter 2. SPE context creation 7

spe_context_destroy

NAME

spe_context_destroy - Destroy the specified SPE context.

SYNOPSIS

#include <libspe2.h>

int spe_context_destroy (spe_context_ptr_t spe)

 Parameters

spe Specifies the SPE context to be destroyed.

DESCRIPTION

Destroy the specified SPE context and free any associated resources.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EAGAIN The specified SPE context cannot be

destroyed at this time because it is in use.

EFAULT A runtime error of the underlying operating

system service occurred.

SEE ALSO

spe_context_create(3)

8 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_gang_context_create

NAME

spe_gang_context_create - Create a new SPE gang context.

SYNOPSIS

#include <libspe2.h>

spe_gang_context_ptr_t spe_gang_context_create (unsigned int flags)

 Parameters

flags A bit-wise OR of modifiers that are applied

when the SPE context is created. See Usage.

RETURN VALUE

On success, a pointer to the newly created gang context is returned.

EXIT STATUS

On error, NULL is returned and errno is set to indicate the error.

Possible errors include:

 ENOMEM The gang context could not be allocated due

to lack of system resources.

EINVAL The value passed for flags is not valid.

EFAULT A runtime error of the underlying operating

system service occurred.

USAGE

The following values are accepted for the flags parameter:

 <none> none

SEE ALSO

spe_context_destroy(3); spe_gang_sccontext_destroy(3)

Chapter 2. SPE context creation 9

spe_gang_context_destroy

NAME

spe_gang_context_destroy - Destroy the specified gang context.

SYNOPSIS

#include <libspe2.h>

int spe_gang_context_destroy (spe_gang_context_ptr_t gang)

 Parameters

gang Specifies the gang context to be destroyed.

DESCRIPTION

Destroy the specified gang context and free any associated resources. Before you

destroy a gang context, you must destroy all associated SPE contexts using

spe_context_destroy.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified gang context is not valid.

EAGAIN The specified gang context cannot be

destroyed at this time since it is in use.

EFAULT A runtime error of the underlying operating

system service occurred.

SEE ALSO

spe_context_destroy(3); spe_gang_context_create(3)

10 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_context_create_affinity

NAME

spe_context_create_affinity - Create a new SPE context with an affinity constraint.

SYNOPSIS

#include <libspe2.h>

spe_context_ptr_t spe_context_create_affinity(unsigned int flags,

spe_context_ptr_t affinity_neighbor, spe_gang_context_ptr_t gang)

 Parameters

flags A bit-wise OR of modifiers that are applied

when the SPE context is created.

affinity_neighbor The affinity_neighbor parameter identifies a

previously created SPE context in the named

gang. A NULL value may be specified for the

initial SPE context. Or the

spe_context_create() routine may be used to

create the initial SPE context. The

affinity_neighbor must be in the same gang as

the newly created SPE context.

gang Associate the new SPE context with this gang

context. NULL is not permitted here, because

affinity constraints can only be specified for

members of the same gang.

DESCRIPTION

This function allows an SPE context to be created and placed next to another

previously created SPE context. SPE-SPE Affinity is always specified in affinity

pairs. The SPE scheduler honors this relationship by scheduling the SPE contexts

on physically adjacent SPUs. This function can be used to create a chain of SPE

contexts that consumes all of the available SPE resources on a Cell BE, but not

more. If you want to use additional SPE resources, you must create a separate

gang or individual SPE contexts for that purpose. All SPE contexts in the gang

must be created before you run any SPE contexts in the gang.

RETURN VALUE

On success, a pointer to the newly created SPE context is returned.

EXIT STATUS

On error, NULL is returned and errno is set to indicate the error.

Possible errors include:

 ENOTSUP Platform does not support affinity

(PlayStation 3 does not support affinity).

EEXIST Too many references to affinity neighbor.

Too many SPE contexts with memory

affinity specified.

Chapter 2. SPE context creation 11

ESRCH No such SPE context (affinity_neighbor is

not valid).

No such gang context (gang context could

not be found).

EINVAL Argument is not valid (bad flag value).

EPERM Lack of resources (too many isolated SPUs).

The process does not have permission to

add threads to the designated SPE gang

context, or to use the SPU_MAP_PS setting.

ENOMEM The SPE context could not be allocated due

to lack of system resources.

EFAULT A runtime error of the underlying operating

system service occurred.

EBUSY Cannot add more SPE affinity contexts

because an SPE context in the gang is

already running.

ENODEV An isolated SPE context has been requested

but the system is not isolation-enabled.

OPTIONS

The following values for flags are accepted:

 Flags Description

SPE_EVENTS_ENABLE Event handling shall be enabled on this SPE

context

SPE_CFG_SIGNOTIFY1_OR Configure the SPU Signal Notification 1

Register to be in ″logical OR″ mode instead

of the default ″Overwrite″ mode.

SPE_CFG_SIGNOTIFY2_OR Configure the SPU Signal Notification 2

Register1 to be in ″logical OR″ mode instead

of the default ″Overwrite″ mode.

SPE_MAP_PS Request permission for memory-mapped

access to the SPE’s problem state area(s).

SPE_ISOLATED This context executes on an SPU in the

isolation mode. Programs loaded into

contexts flagged with SPE_ISOLATED must

be be correctly formatted for isolated

execution.

SPE_ISOLATED_EMULATE Run this context on an SPU in an emulated

isolation mode. This mode provides

emulation of an isolated SPU without truly

being isolated as is intended for use by

developers who need access to debug tools

during the development of their isolated

applications. Programs loaded into contexts

flagged with SPE_ISOLATED_EMULATE

must be correctly formatted for isolated

emulation execution.

Note: (Linux) Proper operation of a PPE

assisted function call assumes the use of the

ISOLATED version of the SPE library

functions.

12 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

SPE_AFFINITY_MEMORY Request that the new SPE context is placed

on an SPE that is considered to be the closest

to main memory. Only one SPE context in

the gang may be created with memory

affinity.

SEE ALSO

spe_cpu_info_get(3)

Chapter 2. SPE context creation 13

14 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 3. CPU information

Applications often require basic information about the system they are running on,

such as number of CPUs (PPEs), number of SPEs, and other information about the

processing environment. The following section describes the function

spe_cpu_info_get which you can use to obtain this information.

 15

spe_cpu_info_get

NAME

spe_cpu_info_get - Query basic CPU properties and resources.

SYNOPSIS

#include <libspe2.h>

int spe_cpu_info_get(unsigned int info_requested, int cpu_node)

 Parameters

info_requested Specifies the type of information requested.

cpu_node Specifies the node for which the information

is requested. The numbering of CPU nodes is

consistent with the numbering used by the

NUMA control. This information can be used

in conjunction with explicit NUMA control

by the application.

DESCRIPTION

Applications often require some basic information about the system they are

running on, such as number of CPUs (PPEs) or number of SPEs.

In the context of this API, the term ″system″ means the ″hardware″ seen by the

currently running operating system, and the term ″physical″ refers to resources in

that system. For example, in case of a hypervisor-based system, the result returned

can be different from the actual number of items present in the hardware.

RETURN VALUE

On success, this function returns 0 (zero) or a positive value that indicates the

value requested.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 EINVAL Function argument error

USAGE

The following values for info_requested are accepted:

 Flag Description

SPE_COUNT_PHYSICAL_CPU_NODES Request the number of physical CPU nodes

of the system

SPE_COUNT_PHYSICAL_SPES Request the total number of physical SPEs

available either on the whole system or on a

specified node.

16 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

SPE_COUNT_USABLE_SPES Request the number of SPEs that can actually

be used by the application at this point in

time. This is the number of SPEs that can

actually be scheduled to run for the

application, provided it has high enough

scheduling priority. In particular, if the

operating system reserves SPEs or

(privileged) applications have ″pinned″ SPEs,

that is, made them non-schedulable, these are

not counted as usable SPEs.

The following values for cpu_node are accepted:

 Flags Description

-1 Request an aggregated result for the whole

system.

0..(n-1) Request information for this specific CPU

node. n is the number of physical CPU nodes

in the system. On platforms with enabled

NUMA-support, the numbering of CPU

nodes is consistent with the numbering used

by the NUMA control. This information can

be used in conjunction with explicit NUMA

control by the application. On platforms with

a single processor, the number of the CPU

node is 0. On platforms with multiple

processors but without enabled

NUMA-support, the numbering of CPU

nodes is not specified. In this case, the

operating system may also not be able to

determine the association of SPEs with CPU

nodes properly.

EXAMPLES

Assume the application is running on a system which as two Cell BE processors

with eight physical SPEs available on each CPU. The operating system has

reserved one SPE on node 0 for some kernel tasks and a concurrently running

application has two SPEs ″pinned″ (″reserved exclusively″, ″non-schedulable″) on

node 1.

 no_cpus = spe_cpu_info_get(SPE_COUNT_PHYSICAL_CPU_NODES, -1);

 ==> 2

 no_phys_spes = spe_cpu_info_get(SPE_COUNT_PHYSICAL_SPES, -1);

 ==> 16

 no_phys_spes = spe_cpu_info_get(SPE_COUNT_PHYSICAL_SPES, 0);

 ==> 8

 no_phys_spes = spe_cpu_info_get(SPE_COUNT_PHYSICAL_SPES, 1);

 ==> 8

 no_usable_spes = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);

 ==> 13

 no_usable_spes = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, 0);

 ==> 7

 no_usable_spes = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, 1);

 ==> 6

Chapter 3. CPU information 17

18 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 4. SPE program image handling

Before you can run an SPE context, you must load an SPE program into the SPE’s

local store. To do this, you use the function spe_program_load. The SPE program

can either be an independent ELF image in a file or it can be embedded in the

main thread executable in special sections. The first case requires that the SPE

program image is loaded into memory by calling spe_image_open.

You can find information about SPE executables Cell Broadband Engine Programming

Handbook, Version 1.0, chapter 14 ″Objects, Executables, and SPE Loading″.

SPE image functions

The following section describes the SPE program image functions.

 19

spe_image_open

NAME

spe_image_open - Open an SPE ELF executable and map it into system memory.

SYNOPSIS

#include <libspe2.h>

spe_program_handle_t *spe_image_open (const char *filename)

 Parameters

filename Specifies the filename of an SPE ELF

executable to be loaded and mapped into

system memory.

DESCRIPTION

spe_open_image opens an SPE ELF executable indicated by filename and maps it

into system memory. The result is a pointer to an SPE program handle which can

then be used with spe_program_load to load this SPE main program into the local

store of an SPE before running it with spe_context_run. The file containing the SPE

executable must have execution access rights. SPE ELF objects loaded using this

function are not shared with other applications and processes.

It can be more convenient to embed SPE ELF objects directly within the PPE

executable using the linker and an ″embed_spu″ (or equivalent) tool (see toolchain

documentation). In this case, SPE ELF objects are converted to PPE static or shared

libraries with symbols, which point to the SPE ELF objects after these special

libraries are loaded.

These libraries are then linked with the associated PPE code to provide a direct

symbol reference to the SPE ELF object. The symbols in this scheme are equivalent

to the address returned from the spe_image_open function and can be used as SPE

program handles by spe_program_load. SPE ELF objects created using the

embedding approach can be shared between processes.

RETURN VALUE

On success, a non-null handle to the mapped SPE ELF object is returned.

EXIT STATUS

On error, NULL is returned and errno is set to indicate the error.

Possible errors include:

 EACCES The calling process does not have the

necessary permissions to access the specified

file.

EFAULT The filename parameter points to an address

that was not contained in the calling

process’s address space.

20 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

other A number of other errno values could be

returned by the open(2), fstat(2), or mmap(2)

system calls which may be utilized by the

spe_image_open function.

SEE ALSO

spe_program_load(3); spe_context_run(3); spe_image_close(3)

Chapter 4. SPE program image handling 21

spe_image_close

NAME

spe_image_close - Unmap and close an SPE ELF object.

SYNOPSIS

#include <libspe2.h>

int spe_image_close (spe_program_handle_t *program)

 Parameters

program A valid address of a mapped SPE program.

DESCRIPTION

Unmaps and closes an SPE ELF object that was previously opened and mapped

using spe_open_image.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 EINVAL The specified address of the SPE program is

invalid.

other A number of other errno values could be

returned by the munmap(2) or close(2)

system calls which may be utilized by the

spe_image_open function.

SEE ALSO

spe_image_open(3)

22 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_program_load

NAME

spe_program_load - Load an SPE main program.

SYNOPSIS

#include <libspe2.h>

int spe_program_load (spe_context_ptr_t spe, spe_program_handle_t *program)

 Parameters

spe A valid pointer to the SPE context for which

an SPE program should be loaded.

program A valid address of a mapped SPE program.

DESCRIPTION

Load an SPE main program that has been mapped to memory at the address

pointed to by program into the local store of the SPE identified by the SPE context

spe. This is mandatory before running the SPE context with spe_context_run.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is not valid.

EINVAL The specified address of the SPE program is

not valid.

ENOEXEC The program image is not correctly

formatted.

SEE ALSO

spe_context_run(3); spe_image_close(3)

Chapter 4. SPE program image handling 23

24 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 5. SPE run control

After the application has created an SPE context and loaded an SPE program into

its local store, it can call spe_context_run to run an SPE context. A thread which

executes an SPE context is called an SPE thread.

The API function to run a context is a synchronous, blocking call from the

perspective of the thread using it, that is, while an SPE program is executing, the

associated SPE thread blocks and is usually put to ″sleep″ by the operating system.

When the SPE program stops, either because it reaches its ″normal″ exit point, or a

stop and signal instruction or an error condition, the spe_context_run function

returns and the resulting return value specifies the exact condition under which

the SPE program stopped.

Many applications need to use multiple SPEs concurrently. In this case, the

application must create at least as many threads, by using standard methods of the

operating system, as concurrent SPE contexts are required. Each of these threads

may run a single SPE context at a time. If N concurrent SPE contexts are needed, it

is, however, common to use N+1 threads; one main (application) thread that

″orchestrates″ the execution of N SPE threads.

In a multithreaded environment, it is often convenient to use an event mechanism

for notification about certain events caused by the asynchronously running SPE

threads. A specific event is used to indicate that an SPE context has stopped in the

SPE thread. The function spe_stop_info_read allows the main thread to read the

full information about why the SPE context stopped.

SPE run functions

The following section describes the SPE run functions.

 25

spe_context_run

NAME

spe_context_run - Request execution of an SPE context.

SYNOPSIS

#include <libspe2.h>

int spe_context_run(spe_context_ptr_t spe, unsigned int *entry, unsigned int

runflags, void *argp, void *envp, spe_stop_info_t *stopinfo)

 Parameters

spe A pointer to the SPE context that should be

run.

entry Input: The entry point, that is, the initial

value of the SPU instruction pointer, at

which the SPE program should start

executing. If the value of entry is

SPE_DEFAULT_ENTRY, the entry point for

the SPU main program is obtained from the

loaded SPE image. This is usually the local

store address of the initialization function

crt0 (see Cell Broadband Engine Programming

Handbook, Objects, Executables, and SPE

Loading).

Output: The SPU instruction pointer at the

moment the SPU stopped execution, that is,

the local store address of the next instruction

that would be have been executed.

This parameter can be used, for example, to

allow the SPE program to ″pause″ and

request some action from the PPE thread, for

example, performing an I/O operation. After

this PPE-side action has been completed, you

can continue the SPE program calling

spe_context_run again without changing

entry.

runflags A bit mask that can be used to request

certain specific behavior for the execution of

the SPE context. If the value is 0, this

indicates default behavior (see Usage).

argp An (optional) pointer to application specific

data, and is passed as the second parameter

to the SPE program, (see Note).

envp An (optional) pointer to environment specific

data, and is passed as the third parameter to

the SPE program, (see Note).

stopinfo An (optional) pointer to a structure of type

spe_stop_info_t (see Usage).

DESCRIPTION

Request execution of an SPE context. A SPE program must be loaded (using

spe_program_load) before you can run the SPE context.

26 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

The thread calling spe_context_run blocks and waits until the SPE stops, due to

normal termination of the SPE program, or an SPU stop and signal instruction, or

an error condition. When spe_context_run returns, the calling thread must take

appropriate actions depending on the application logic.

spe_context_run returns information about the termination of the SPE program in

three ways. This allows applications to deal with termination conditions on various

levels.

v First, the most common usage for many applications is covered by the return

value of the function and the errno value being set appropriately.

v Second, the optional stopinfo structure provides detailed information about the

termination condition in a structured way that allows applications more

fine-grained error handling and enables implementation of special scenarios.

v Third, the stopinfo structure contains the field spu_status that contains the value

of the CBEA SPU Status Register (SPU_Status) as specified in the Cell Broadband

Engine Architecture, Version 1, section 8.5.2 upon termination of the SPE program.

This can be very useful, especially in conjunction with the

SPE_NO_CALLBACKS flag, for applications that run non-standard SPE

programs and want to react to all possible conditions flexibly and not rely on

predefined conventions.

RETURN VALUE

On success, 0 (zero) or a positive number is returned.

A return value of 0 (zero) indicates that the SPE program terminated normally by

calling exit(). The actual exit value can be obtained from stopinfo.

A positive return value indicates that the SPE has stopped because the SPU issued

a stop and signal instruction and the return value represents the 14-bit value set by

that stop and signal instruction.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is not valid.

EINVAL The value passed for flags is not valid.

EIO An SPE I/O error occurred, for example, a

misaligned DMA. Details can be found in

stopinfo.

EFAULT Some other SPE runtime problem occurred.

Details can be found in stopinfo.

EPERM The SPE isolation system mechanism is

corrupted. No isolated SPE program can be

loaded and started.

OPTIONS

The following flags are accepted for the runflags parameter. Multiple flags can be

combined using bit-wise OR.

Chapter 5. SPE run control 27

SPE_RUN_USER_REGS

Specifies that the SPE setup registers r3, r4, and r5 are initialized with the

48 bytes pointed to by argp.

SPE_NO_CALLBACKS

Specifies that registered SPE library calls (″callbacks″ from this library’s

view) should not run automatically if a callback is encountered. This also

disables callbacks that are predefined in the library implementation. See

PPE-assisted library calls for details.

 spe_context_run returns as if the SPU would have issued a regular stop

and signal instruction. The signal code is returned as part of stopinfo.

USAGE

stopinfo

When spe_context_run returns, it provides information about the exact conditions

in which the SPE stopped program execution in the data structure pointed to by

stopinfo. If stopinfo is NULL, this information is not returned by the call.

If stopinfo is a valid pointer, the structure is filled with all information available as

to the reason why the SPE program stopped running. This information is

important for some advanced programming patterns, or detailed error reporting, or

both.

If stopinfo is NULL, no information beyond the return value (specified below) as to

the reason and associated data why the SPE program stopped execution will be

returned.

The data type spe_stop_info_t is defined as follows:

typedef struct spe_stop_info {

 unsigned int stop_reason;

 union {

 int spe_exit_code;

 int spe_signal_code;

 int spe_runtime_error;

 int spe_runtime_exception;

 int spe_runtime_fatal;

 int spe_callback_error;

 int spe_isolation_error;

 void *__reserved_ptr;

 unsigned long long __reserved_u64;

 } result;

 int spu_status;

} spe_stop_info_t;

The valid values for stop_reason are defined by the following constants:

 SPE_EXIT SPE program terminated calling exit(code) with code in

the range 0..255. The code is saved in spe_exit_code.

SPE_STOP_AND_SIGNAL SPE program stopped because SPU ran a stop and signal

instruction. Further information in field spe_signal_code.

SPE_RUNTIME_ERROR SPE program stopped because of a one of the reasons

found in spe_runtime_error.

Note: (Linux) The error SPE_SPU_INVALID_INSTR is

reported as a Linux signal SIGILL if the SPE context was

created without the flag SPE_EVENTS_ENABLE.

28 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

SPE_RUNTIME_EXCEPTION SPE program stopped asynchronously because of a

runtime exception (event) described in

spe_runtime_exception. In this case, spe_status would be

meaningless and is therefore set to -1.

Note: (Linux®) This error situation can only be caught

and reported by spe_context_run if the SPE context was

created with the flag SPE_EVENTS_ENABLE indicating

that event support is requested. Otherwise the Linux

kernel generates a signal to indicate the runtime error.

SPE_RUNTIME_FATAL The SPE program stopped for other reasons, usually fatal

operating system errors such as insufficient resources.

Further information in spe_runtime_fatal.

In this case, spe_status would be meaningless and is

therefore set to -1.

SPE_CALLBACK_ERROR An SPE program tried to use unregistered library callback,

or a library callback returned a non-zero exit value, which

is provided in spe_callback_error.

SPE_ISOLATION_ERROR The SPE isolation system mechanism has detected an error

when attempting to load the isolated SPE program. The

reason for the failure is captured in spe_isolation_error.

Depending on stop_reason more specific information is provided in the result field:

 spe_exit_code Exit code returned by the SPE program in the range

0..255. The convention for stop and signal usage by SPE

programs is that 0x2000-0x20FF are exit events.

0x2100-0x21FF are callback events. 0x0 is an invalid

instruction runtime error. Signal codes 0x0001-0x1FFF are

user-defined signals. This convention determines the

mapping to the respective fields in stopinfo.

spe_signal_code Stop and signal code sent by the SPE program. The lower

14-bit of this field contain the signal number. The

convention for stop and signal usage by SPE programs is

that 0x2000-0x20FF are exit events. 0x2100-0x21FF are

callback events. 0x0 is an invalid instruction runtime

error. Signal codes 0x0001-0x1FFF are user-defined

signals. This convention determines the mapping to the

respective fields in stopinfo.

spe_runtime_error SPE_SPU_HALT: SPU was stopped by halt.

SPE_SPU_SINGLE_STEP: SPU is in single-step mode

SPE_SPU_INVALID_INSTR: SPU has tried to execute an

invalid instruction

SPE_SPU_INVALID_CHANNEL: SPU has tried to access

an invalid channel

spe_runtime_exception SPE_DMA_ALIGNMENT: A DMA alignment error

SPE_DMA_SEGMENTATION: A DMA segmentation

error

SPE_DMA_STORAGE: A DMA storage error

SPE_INVALID_DMA: An invalid DMA error

spe_runtime_fatal Contains the (implementation-dependent) errno as set by

the underlying system call that failed.

Chapter 5. SPE run control 29

spe_callback_error Contains the return code from the failed library callback,

or it is set to -1 in the case of unregistered library

callback.

spe_isolation_error Contains the implementation-dependent error code for

the failed starting of an isolated SPE program.

The field spu_status contains the value of the architected ″SPU Status Register

(SPU_Status)″ as defined in the Cell Broadband Engine Architecture, Version 1.0,

section 8.5.2 at the point in time the SPU stopped execution. In some

circumstances, for example, asynchronous errors such as DMA alignment errors,

this value would be meaningless and therefore a value of -1 is returned to indicate

that situation.

The content of spu_status is fully reflected in the stop_reason and subsequent field

and is returned to allow low-level application their own, direct interpretation of

spu_status directly following the CBE Architecture specification. Most applications

do not need this field.

NOTES

Argument passing to SPE programs:

An application may pass arguments to an SPE program by using argp, envp, and

the SPE_RUN_USER_REGS flag above. The SPE registers r3, r4, and r5 are

initialized according to the following scheme:

If SPE_RUN_USER_REGS is not set, then the registers are initialized as follows:

v r3 spe - the address of the SPE context being run

v r4 argp - usually a pointer to argv of the main program

v r5 envp - usually the environment pointer of the main program

All 32-bit or 64-bit pointers are put into the correct preferred slots for the 128-bit

SPE registers.

If SPE_RUN_USER_REGS is set, then the registers are initialized with a copy of an

(uninterpreted) 48-byte user data field pointed to by argp. envp is ignored in this

case.

SEE ALSO

spe_context_create(3); spe_program_load(3)

30 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_stop_info_read

NAME

spe_stop_info_read - Read information about the conditions in which the SPE

stopped.

SYNOPSIS

#include <libspe2.h>

int spe_stop_info_read (spe_context_ptr_t spe, spe_stop_info_t *stopinfo)

 Parameters

spe A pointer to the SPE context for which stop

information is requested.

stopinfo A pointer to a structure of type

spe_stop_info_t (specified in spe_context_run).

The structure is filled with all information

available as to the reason why the SPE

program stopped execution.

DESCRIPTION

Reads information about the conditions in which the SPE identified by spe stopped.

This function is intended for use when the spe_context_run call returns, that is the

SPE stops, in the SPE thread.

This is a non-blocking call. If the information does not exist, for example, because

the context has never been run, or has already been read, for example, by another

thread, the function returns an error with errno set to EAGAIN.

This function requires that the SPE context spe has been created with event

support, that is, the SPE_EVENTS_ENABLE flag has been set. Otherwise, it returns

an error ENOTSUP.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EAGAIN No data available.

ENOTSUP Event processing is not enabled for this SPE

context.

EINVAL The specified pointer to an spe_stop_info_t

structure is invalid.

Chapter 5. SPE run control 31

SEE ALSO

spe_context_run(3)

32 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 6. SPE event handling

In a multithreaded environment, it is often convenient to use an event mechanism

for asynchronous notification. A common use is that the main thread sets up an

event handler to receive notification about certain events caused by the

asynchronously running SPE threads, see spe_event_handler_create and

spe_event_handler_register. It then uses an event loop to wait for events, using

spe_event_wait, and performs appropriate actions in response.

The library supports events to indicate that an SPE has stopped execution, mailbox

messages have been written or read by an SPE, or PPE-initiated DMA operations

have completed. In order to obtain details associated with the event, the

application has to perform a separate action, for example, call spe_stop_info_read

to obtain the full information on the stop reason for an SPE context, call

spe_out_intr_mbox_read to actually read the message from the SPE mailbox, or

call spe_mfcio_tag_status_read to know which tag groups completed.

SPE event functions

The following section describes the SPE event functions.

 33

spe_event_handler_create

NAME

spe_event_handler_create - Create a SPE event handler and return a pointer to it.

SYNOPSIS

#include <libspe2.h>

spe_event_handler_ptr_t spe_event_handler_create(void)

 Parameters

void none

RETURN VALUE

On success, a pointer to an SPE event handler is returned.

EXIT STATUS

On error, NULL is returned and errno is set to indicate the error.

Possible errors include:

 ENOMEM The SPE event handler could not be

allocated due to lack of system resources.

EFAULT A runtime error of the underlying OS service

occurred.

SEE ALSO

spe_event_handler_destroy(3)

34 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_event_handler_destroy

NAME

spe_event_handler_destroy - Destroy a SPE event handler.

SYNOPSIS

#include <libspe2.h>

int spe_event_handler_destroy (spe_event_handler_ptr_t evhandler);

 Parameters

evhandler A pointer to the SPE event handler to be

destroyed.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno ise set to indicate the error.

Possible errors include:

 ESRCH The specified SPE event handler is invalid.

EAGAIN The specified SPE event handler cannot be

destroyed at this time since it is in use, that

is an spe_event_wait call is currently active

waiting on this handler.

EFAULT A runtime error of the underlying OS service

occurred.

SEE ALSO

spe_event_handler_create(3); spe_event_wait(3)

Chapter 6. SPE event handling 35

spe_event_handler_deregister

NAME

spe_event_handler_deregister - Deregister the application’s interest in SPE events.

SYNOPSIS

#include <libspe2.h>

int spe_event_handler_deregister(spe_event_handler_ptr_t evhandler,

spe_event_unit_t *event);

 Parameters

evhandler A pointer to the SPE event handler.

event A pointer to an SPE event structure.

DESCRIPTION

Deregisters the application’s interest in SPE events of the specified nature as

defined in the event structure.

It is no error to deregister interest in events that have not been registered before.

Therefore, all events on a specific evhandler and spe can be always deregistered

with a single function call using the SPE_EVENT_ALL_EVENTS mask.

This function requires that the SPE context spe in event has been created with event

support, that is, the SPE_EVENTS_ENABLE flag has been set. Otherwise, it returns

an error ENOTSUP.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE event handler is invalid.

EINVAL The specified pointer to an SPE event

structure or the SPE context specified in the

SPE event structure is invalid.

ENOTSUP At least one of the requested events

specified in events is not supported or

invalid or the SPE context does not support

events.

EFAULT A runtime error of the underlying OS service

occurred.

36 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

USAGE

The spe_event_unit_t data structure and its usage are specified in

spe_event_handler_register. A single call to this interface can deregister multiple

events at the same time. The field spe in event is a pointer to an SPE context for

which the events have to be deregistered. The field data will be ignored by this

call.

SEE ALSO

spe_event_handler_register(3); spe_event_wait(3); spe_out_intr_mbox_read(3);

spe_in_mbox_write(3); spe_mfcio_tag_status_read(3); spe_stop_info_read(3)

Chapter 6. SPE event handling 37

spe_event_handler_register

NAME

spe_event_handler_register - Register the application’s interest in SPE events.

SYNOPSIS

#include <libspe2.h>

int spe_event_handler_register(spe_event_handler_ptr_t evhandler,

spe_event_unit_t *event);

 Parameters

evhandler A pointer to the SPE event handler.

event A pointer to an SPE event structure.

DESCRIPTION

Registers the application’s interest in SPE events as defined in the event structure.

This function requires that the SPE context spe in event has been created with event

support, that is, the SPE_EVENTS_ENABLE flag has been set. Otherwise, it returns

an error ENOTSUP.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE event handler is invalid.

EINVAL The specified pointer to an SPE event

structure or the SPE context specified in the

SPE event structure is invalid

ENOTSUP At least one of the requested events

specified in events is not supported or

invalid or the SPE context does not support

events.

EFAULT A runtime error of the underlying OS service

occurred.

USAGE

The data structure spe_event_unit_t is defined as follows:

typedef struct spe_event_unit {

 unsigned int events;

 spe_context_ptr_t spe;

 spe_event_data_t data;

} spe_event_unit_t;

38 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

The field events specifies a bitmask to request certain SPE events to be delivered to

the application. Multiple events can be requested at once by using bit-wise OR.

The following events are supported:

 SPE_EVENT_OUT_INTR_MBOX Data is available in the SPU outbound

interrupting mailbox. This event is generated,

when the SPU has written at least one entry

to the SPU outbound interrupting mailbox

(see spe_out_intr_mbox_read).

SPE_EVENT_IN_MBOX Data can now be written to the SPU inbound

mailbox. This event is generated when the

inbound mailbox is not full and signals that

at least one message can be successfully

written spe_in_mbox_write).

SPE_EVENT_TAG_GROUP An SPU event tag group signaled completion

(see spe_mfcio_tag_status_read).

SPE_EVENT_SPE_STOPPED Program execution on the SPE has stopped.

(see spe_stop_info_read).

SPE_EVENT_ALL_EVENTS Interest in all defined SPE events, this

corresponds to a bit-wise OR of all flags

above.

The field spe is a pointer to an SPE context for which the events have to be

registered.

The structure spe_event_unit contains a field data of type spe_event_data that is

intended to hold user data. The value of this field will be returned to the

application by spe_event_wait unmodified, whenever an event as specified here

occurs.

typedef union spe_event_data {

 void *ptr;

 unsigned int u32;

 unsigned long long u64;

 } spe_event_data_t;

SEE ALSO

spe_event_handler_deregister(3); spe_event_wait(3); spe_out_intr_mbox_read(3);

spe_in_mbox_write(3); spe_mfcio_tag_status_read(3); spe_stop_info_read(3)

Chapter 6. SPE event handling 39

spe_event_wait

NAME

spe_event_wait - Wait for SPE events.

SYNOPSIS

#include <libspe2.h>

int spe_event_wait(spe_event_handler_ptr_t evhandler, spe_event_unit_t *events,

int max_events, int timeout);

 evhandler A valid pointer to the SPE event handler.

events The pointer to the memory area where the

events will be stored. The ’events’ member

will contain the event bit field indicating the

actual event received, and the ’spe’ member

will contain pointer to the SPE context that

generated the event.

For the specification of spe_event_unit_t, see

spe_event_handler_register.

max_events Maximum number of ’events’ to receive. The

call will return if at least one event has been

received or if it times out.

timeout Timeout in milliseconds. -1 means ’infinite’. 0

means that the call should not wait but

return immediately with as many events as

are currently available up to a maximum of

max_events.

RETURN VALUE

On success, the number of SPE events received. If 0 (zero) is returned, no SPE

event was received because the request timed out.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE event handler is invalid.

EINVAL Error in parameters.

EFAULT A runtime error of the underlying OS service

occurred.

SEE ALSO

spe_event_handler_register(3); spe_event_handler_deregister(3);

spe_out_intr_mbox_read(3); spe_out_intr_mbox_status(3); spe_in_mbox_write(3);

spe_mfcio_tag_status_read(3); spe_stop_info_read(3)

40 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 7. SPE MFC problem state facilities

 41

SPE MFC proxy command functions

This set of functions provides PPE-initiated DMA functionality (see Cell Broadband

Engine Architecture, MFC Proxy Commands) through the usage of the SPE MFC

Proxy Command Issue facility. Main threads can use these functions to move data

to and from an SPE local store area.

Note: The naming of the commands is based on a SPE centric view, for example,

″put″ means a transfer from the SPE local store to an effective address valid in the

main thread.

42 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_mfcio_put

NAME

spe_mfcio_put - Place a put DMA command on the proxy command queue of the

SPE context.

SYNOPSIS

#include <libspe2.h>

int spe_mfcio_put (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned

int size, unsigned int tag, unsigned int tid, unsigned int rid)

 Parameters

spe Specifies the SPE context of the proxy

command queue in which the put command

is to be placed.

lsa Specifies the starting local store source

address.

ea Specifies the starting effective address

destination address.

size Specifies the size, in bytes, to be transferred.

tag Specifies the tag ID used to identify the

DMA command. The range for valid tag IDs

is 0:31. Based on the needs of the underlying

operating system implementations of this

API can restrict the range.

Note: (Linux) In the Linux implementation

of libspe2, the range for the valid tags is 0:15.

See Cell Broadband Engine Architecture, MFC

Command Tag Register.

tid Specifies the transfer class identifier of the

DMA command.

rid Specifies the replacement class identifier of

the DMA command.

DESCRIPTION

Places a put DMA command on the proxy command queue of the SPE context

specified by spe

The spe_mfcio_put command transfers size bytes of data starting at the local store

address specified by lsa to the effective address specified by ea. The DMA is

identified by the tag ID specified by tag and performed according transfer class

and replacement class specified by tid and rid respectively.

The caller of this function must ensure that the address alignment and transfer size

is in accordance with the limitation and restrictions of the Cell Broadband Engine

Architecture.

RETURN VALUE

On success, 0 (zero) is returned.

Chapter 7. SPE MFC problem state facilities 43

EXIT STATUS

On error, -1 is returned and errno are set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

44 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_mfcio_putb

NAME

spe_mfcio_putb - Place a put DMA command with a barrier on the proxy

command queue of the SPE context.

SYNOPSIS

#include <libspe2.h>

int spe_mfcio_putb (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned

int size, unsigned int tag, unsigned int tid, unsigned int rid)

 Parameters

spe Specifies the SPE context of the proxy

command queue in which the put command

is to be placed.

lsa Specifies the starting local store source

address.

ea Specifies the starting effective address

destination address.

size Specifies the size, in bytes, to be transferred.

tag Specifies the tag ID used to identify the

DMA command. The range for valid tag IDs

is 0:31. Based on the needs of the underlying

operating system implementations of this

API can restrict the range.

Note: (Linux) In the Linux implementation

of libspe2, the range for the valid tags is 0:15.

See Cell Broadband Engine Architecture, MFC

Command Tag Register.

tid Specifies the transfer class identifier of the

DMA command.

rid Specifies the replacement class identifier of

the DMA command.

DESCRIPTION

Place a put DMA command with a barrier on the proxy command queue of the

SPE context specified by spe.

The spe_mfcio_putb function is identical to spe_mfcio_put except that it places a

putb (put with barrier) DMA command on the proxy command queue. The barrier

form ensures that this command and all sequential commands with the same tag

identifier as this command are locally ordered with respect to all previously issued

commands with the same tag group and command queue.

The caller of this function must ensure that the address alignment and transfer size

is in accordance with the limitation and restrictions of the Cell Broadband Engine

Architecture.

RETURN VALUE

On success, 0 (zero) is returned.

Chapter 7. SPE MFC problem state facilities 45

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

46 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_mfcio_putf

NAME

spe_mfcio_putf - Place a put DMA command with a fence on the proxy command

queue of the SPE context.

SYNOPSIS

#include <libspe2.h>

int spe_mfcio_putf (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned

int size, unsigned int tag, unsigned int tid, unsigned int rid)

 Parameters

spe Specifies the SPE context of the proxy

command queue which the put command is

to be placed.

lsa Specifies the starting local store source

address.

ea Specifies the starting effective address

destination address.

size Specifies the size, in bytes, to be transferred.

tag Specifies the tag ID used to identify the

DMA command. The range for valid tag IDs

is 0:31. Based on the needs of the underlying

operating system implementations of this

API can restrict the range.

Note: (Linux) In the Linux implementation

of libspe2, the range for the valid tags is 0:15.

See Cell Broadband Engine Architecture, MFC

Command Tag Register.

tid Specifies the transfer class identifier of the

DMA command.

rid Specifies the replacement class identifier of

the DMA command.

DESCRIPTION

Places a put DMA command with a fence on the proxy command queue of the SPE

context specified by spe.

The spe_mfcio_putf function is identical to spe_mfcio_put except that it places a

putf (put with fence) DMA command on the proxy command queue. The fence

form ensures that this command is locally ordered with respect to all previously

issued commands with the same tag group and command queue.

The caller of this function must ensure that the address alignment and transfer size

is in accordance with the limitation and restrictions of the Cell Broadband Engine

Architecture.

RETURN VALUE

On success, 0 (zero) is returned.

Chapter 7. SPE MFC problem state facilities 47

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

48 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_mfcio_get

NAME

spe_mfcio_get - Place a get DMA command on the proxy command queue of the

SPE context.

SYNOPSIS

include <libspe2.h>

int spe_mfcio_get (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned int

size, unsigned int tag, unsigned int tid, unsigned int rid)

 Parameters

spe Specifies the SPE context of the proxy

command queue into which the get

command is to be placed.

lsa Specifies the starting local store destination

address.

ea Specifies the starting effective address source

address.

size Specifies the size, in bytes, to be transferred.

tag Specifies the tag ID used to identify the

DMA command. The range for valid tag IDs

is 0:31. Based on the needs of the underlying

operating system implementations of this

API can restrict the range.

Note: (Linux) In the Linux implementation

of libspe2, the range for the valid tags is 0:15.

See Cell Broadband Engine Architecture, MFC

Command Tag Register.

tid Specifies the transfer class identifier of the

DMA command.

rid Specifies the replacement class identifier of

the DMA command.

DESCRIPTION

Places a get DMA command on the proxy command queue of the SPE context

specified by spe

The spe_mfcio_get command transfers size bytes of data starting at the effective

address specified by ea to the local store address specified by lsa. The DMA is

identified by the tag id specified by tag and performed according transfer class and

replacement class specified by tid and rid respectively.

The caller of this function must ensure that the address alignment and transfer size

is in accordance with the limitation and restrictions of the Cell Broadband Engine

Architecture.

RETURN VALUE

On success, 0 (zero) is returned.

Chapter 7. SPE MFC problem state facilities 49

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

50 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_mfcio_getb

NAME

spe_mfcio_getb - Place a get with barrier DMA command on the proxy command

queue of the SPE contexts.

SYNOPSIS

include <libspe2.h>

int spe_mfcio_getb (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned

int size, unsigned int tag, unsigned int tid, unsigned int rid)

 Parameters

spe Specifies the SPE context of the proxy

command queue into which the get

command is to be placed.

lsa Specifies the starting local store destination

address.

ea Specifies the starting effective address source

address.

size Specifies the size, in bytes, to be transferred.

tag Specifies the tag ID used to identify the

DMA command. The range for valid tag IDs

is 0:31. Based on the needs of the underlying

operating system implementations of this

API can restrict the range.

Note: (Linux) In the Linux implementation

of libspe2, the range for the valid tags is 0:15.

See Cell Broadband Engine Architecture, MFC

Command Tag Register.

tid Specifies the transfer class identifier of the

DMA command.

rid Specifies the replacement class identifier of

the DMA command.

DESCRIPTION

Places a get with barrier DMA command on the proxy command queue of the SPE

context specified by spe.

The spe_mfcio_getb command transfers size bytes of data starting at the effective

address specified by ea to the local store address specified by lsa. The DMA is

identified by the tag id specified by tag and performed according transfer class and

replacement class specified by tid and rid respectively.

The spe_mfcio_getb function is identical to spe_mfcio_get except that it places a

getb (get with barrier) DMA command on the proxy command queue. The barrier

form ensures that this command and all sequential commands with the same tag

identifier are locally ordered with respect to all previously issued commands with

the same tag group and command queue.

The caller of this function must ensure that the address alignment and transfer size

is in accordance with the limitation and restrictions of the Cell Broadband Engine

Architecture.

Chapter 7. SPE MFC problem state facilities 51

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

52 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_mfcio_getf

NAME

spe_mfcio_getf - Place a get with fence DMA command on the proxy command

queue of the SPE context .

SYNOPSIS

include <libspe2.h>

int spe_mfcio_getf (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned

int size, unsigned int tag, unsigned int tid, unsigned int rid)

 Parameters

spe Specifies the SPE context of the proxy

command queue into which the get

command is to be placed.

lsa Specifies the starting local store destination

address.

ea Specifies the starting effective address source

address.

size Specifies the size, in bytes, to be transferred.

tag Specifies the tag ID used to identify the

DMA command. The range for valid tag IDs

is 0:31. Based on the needs of the underlying

operating system implementations of this

API can restrict the range.

Note: (Linux) In the Linux implementation

of libspe2, the range for the valid tags is 0:15.

See Cell Broadband Engine Architecture, MFC

Command Tag Register.

tid Specifies the transfer class identifier of the

DMA command.

rid Specifies the replacement class identifier of

the DMA command.

DESCRIPTION

Places a get with fence DMA command on the proxy command queue of the SPE

context specified by spe

The spe_mfcio_getf command transfers size bytes of data starting at the effective

address specified by ea to the local store address specified by lsa. The DMA is

identified by the tag id specified by tag and performed according transfer class and

replacement class specified by tid and rid respectively.

The spe_mfcio_getf function is identical to spe_mfcio_get except that it places a

getf (get with fence) DMA command on the proxy command queue. The barrier

form ensures that this command and all sequence commands with the same tag

identifier as this command are locally ordered with respect to all previously issued

commands with the same tag group and command queue.

The caller of this function must ensure that the address alignments and transfer

size is in accordance with the limitation and restrictions of the Cell Broadband

Engine Architecture.

Chapter 7. SPE MFC problem state facilities 53

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

54 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

SPE MFC multi-source synchronization functions

The MFC multi-source synchronization functions provide facilities for achieving

cumulative ordering across the local storage and main storage address domains for

a specified SPE.

To achieve cumulative ordering, first call spe_mssync_start to cause the MFC to

start tracking all requested, but not completed, transfers targeted at the specified

SPE. When all the transfers that are being tracked are completed,

spe_mssync_status returns a value of 0.

See the Cell Broadband Engine Architecture for more information about multi-source

synchronization facility.

Chapter 7. SPE MFC problem state facilities 55

spe_mssync_start

NAME

spe_mssync_start - Start multi-source synchronization.

SYNOPSIS

include <libspe2.h>

int spe_mssync_start (spe_context_ptr_t spe)

 Parameters

spe Specifies the SPE for which MFC transfers

are to be synchronized.

DESCRIPTION

Start tracking all pending transfers targeted at the specified SPE to facilitate

cumulative ordering of transfers across the local storage and main storage address

domains. Cumulative order is ensured when a subsequent call to

spe_mssync_status returns a value of 0.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

SEE ALSO

spe_mssync_status(3)

56 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_mssync_status

NAME

spe_mssync_status - Fetch the status of the multi-source synchronization.

SYNOPSIS

include <libspe2.h>

int spe_mssync_status (spe_context_ptr_t spe)

 Parameters

spe Specifies the SPE for which the MFC

transfers are to be synchronized.

DESCRIPTION

Fetch the status of the previously requested multi-source synchronization. A

synchronization request is initiated by calling spe_mssync_start.

RETURN VALUE

On success, 0 (zero) is returned.

A value of 0 indicates that all transfers targeting the SPE and received before the

last spe_mssync_start() are complete.

A value of 1 indicates that all transfers targeting the SPE and received before the

last spe_mssync_start() are not complete.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

SEE ALSO

spe_mssync_start(3)

Chapter 7. SPE MFC problem state facilities 57

SPE MFC proxy tag-group completion functions

The following describes the SPE MFC proxy tag-group completion functions.

58 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_mfcio_tag_status_read

NAME

spe_mfcio_tag_status_read - Check the completion of DMA requests.

SYNOPSIS

#include <libspe2.h>

int spe_mfcio_tag_status_read(spe_context_ptr_t spe, unsigned int mask,

unsigned int behavior, unsigned int *tag_status)

 Parameters

spe Specifies the SPE context for which DMA

completion status is to be checked.

mask Specifies which DMA requests should be

taken into account.

behavior Specifies the behavior of the operation.

tag_status Result: the current tag status for tags

specified by mask is returned.

DESCRIPTION

The spe_mfcio_tag_status_read function is used to check the completion of DMA

requests. The optional mask parameter is used to restrict the check to specific tag

groups. A mask of value ’0’ indicates that all current DMA requests should be taken

into account. The behavior field specifies completion of any of the members of the

specified tag groups, or completion of all members of the specified tag groups.

The non-blocking reading of the tag status by specifying SPE_TAG_IMMEDIATE is

especially advantageous when combining with SPE event handling. Note that after

receiving a tag group completion event, the tag status has to be read before another

DMA is started on the same SPE.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

ENOTSUP The usage of a non-zero mask parameter is

not supported by this implementation of the

library or underlying OS.

EINVAL The specified behavior or the specified

pointer to a space for the result is invalid.

Chapter 7. SPE MFC problem state facilities 59

OPTIONS

The value of the behavior parameter can be one of:

 Value Description

SPE_TAG_ALL The function blocks execution until all DMA

commands in the tag groups enabled by the

mask parameter have no outstanding DMAs

in the proxy command queue of the SPE

context specified by spe. The masked tag

status is returned.

SPE_TAG_ANY The function blocks execution until any

DMA commands in the tag groups enabled

by the mask parameter have no outstanding

DMAs in the proxy command queue of the

SPE context specified by spe. The masked tag

status is returned.

SPE_TAG_IMMEDIATE The function returns the tag status for the tag

groups specified by the mask parameter for

the proxy command queue of the SPE

context specified by the spe.

The value of the mask parameter can be one of:

 Value Description

0 (zero) Indicates that all current DMA requests

should be taken into account. This takes into

account only those DMAs started using

libspe library calls, because the library and

operating system have no way to know

about DMA initiated by applications using

direct problem state access.

A non-zero value A non-zero value must be specified

according to the Cell Broadband Engine

Architecture, Version 1.0, section 8.4.3.

SEE ALSO

spe_mfcio_get(3); spe_mfcio_getb(3); spe_mfcio_getf(3); spe_mfcio_put(3);

spe_mfcio_putb(3); spe_mfcio_putf(3)

60 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

SPE mailbox functions

This set of functions allows a main thread to communicate with an SPE through its

mailbox facility.

The naming of the mailboxes is based on a SPE centric view, for example,

″out_mbox″ is the outbound mailbox for the SPE, and the corresponding library

function spe_out_mbox_read is used to read the mailbox message from the main

thread.

Chapter 7. SPE MFC problem state facilities 61

spe_out_mbox_read

NAME

spe_out_mbox_read - read up to count available messages from the SPE outbound

mailbox.

SYNOPSIS

#include <libspe2.h>

int spe_out_mbox_read (spe_context_ptr_t spe, unsigned int *mbox_data, int

count)

 Parameters

spe Specifies the SPE context of the SPU

outbound mailbox to be read.

mbox_data A pointer to an array of count unsigned

integers of size to store the 32-bit mailbox

messages read by the call.

count The maximum number of mailbox entries to

be read by this call.

DESCRIPTION

This function reads up to count available messages from the SPE outbound mailbox

for the SPE context spe. This is a non-blocking function call. If less than count

mailbox entries are available, only those will be read.

spe_out_mbox_status can be called to ensure that data is available prior to reading

the outbound mailbox.

RETURN VALUE

>0 the number of 32-bit mailbox messages read

0 (zero) no data read

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EIO The I/O error occurred.

EINVAL The specified pointer to the mailbox

message or the specified maximum number

of mailbox entries is invalid.

SEE ALSO

spe_out_mbox_status(3)

62 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_out_mbox_status

NAME

spe_out_mbox_status - Fetch the status of the SPU outbound mailbox.

SYNOPSIS

#include <libspe2.h>

int spe_out_mbox_status (spe_context_ptr_t spe)

 Parameters

spe Specifies the SPE context of the SPU

outbound mailbox to be read.

DESCRIPTION

The spe_out_mbox_status function fetches the status of the SPU outbound mailbox

for the SPE context specified by the spe parameter.

RETURN VALUE

>0 the number of 32-bit mailbox messages available for read

0 (zero) no data available (the mailbox is empty)

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EIO The I/O error occurred.

SEE ALSO

spe_out_mbox_read(3)

Chapter 7. SPE MFC problem state facilities 63

spe_in_mbox_write

NAME

spe_in_mbox_write - Write up to count messages to the SPE inbound mailbox.

SYNOPSIS

#include <libspe2.h>

int spe_in_mbox_write (spe_context_ptr_t spe, unsigned int *mbox_data, int

count, unsigned int behavior)

 Parameters

spe Specifies the SPE context of the SPU inbound

mailbox to be written.

mbox_data A pointer to an array of count unsigned

integers containing the 32-bit mailbox

messages to be written by the call.

count The maximum number of mailbox entries to

be written by this call.

behavior Specifies whether the call should block until

mailbox messages are written.

DESCRIPTION

Write up to count messages to the SPE inbound mailbox for the SPE context spe.

This call may be blocking or non-blocking, depending on behavior.

The blocking version of this call is useful to send a sequence of mailbox messages

to an SPE program, which do not require further synchronization. The

non-blocking version is advantageous when SPE events are used for

synchronization in multi-threaded applications.

spe_in_mbox_status can be called to ensure that data can be written before writing

the SPU inbound mailbox.

RETURN VALUE

>0 the number of 32-bit mailbox messages written

0 (zero) no mailbox message could be written

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EIO The I/O error occurred.

EINVAL The specified pointer to the mailbox

message, the specified maximum number of

mailbox entries, or the specified behavior is

invalid.

64 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

OPTIONS

Possible values for behavior are:

 Value Description

SPE_MBOX_ALL_BLOCKING The call blocks until all count mailbox

messages have been written.

SPE_MBOX_ANY_BLOCKING The call blocks until at least one mailbox

message has been written.

SPE_MBOX_ANY_NONBLOCKING The call writes as many mailbox messages as

possible up to a maximum of count without

blocking.

SEE ALSO

spe_in_mbox_status(3)

Chapter 7. SPE MFC problem state facilities 65

spe_in_mbox_status

NAME

spe_in_mbox_status - Fetch the status of the SPU inbound mailbox for the SPE

context.

SYNOPSIS

#include <libspe2.h>

int spe_in_mbox_status (spe_context_ptr_t spe)

 Parameters

spe Specifies the SPE context of the SPU

outbound mailbox to be read.

DESCRIPTION

The spe_in_mbox_status function fetches the status of the SPU inbound mailbox

for the SPE context specified by the spe parameter.

RETURN VALUE

>0 the number of 32-bit mailbox messages that can be written

0 (zero) no data can be written (mailbox full)

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EIO The I/O error occurred.

SEE ALSO

spe_in_mbox_write(3)

66 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_out_intr_mbox_read

NAME

spe_out_intr_mbox_read - Read up to count messages from the SPE outbound

interrupting mailbox.

SYNOPSIS

#include <libspe2.h>

int spe_out_intr_mbox_read (spe_context_ptr_t spe, unsigned int *mbox_data, int

count, unsigned int behavior)

 Parameters

spe Specifies the SPE context of the SPU inbound

mailbox to be written.

mbox_data A pointer to an array of count unsigned

integers holding the 32-bit mailbox messages

to be written by the call.

count The maximum number of mailbox entries to

be read by this call.

behavior Specifies whether the call should block until

completion.

DESCRIPTION

This function reads up to count messages from the SPE outbound interrupting

mailbox for the SPE context spe. This call may be blocking or non-blocking,

depending on behavior.

The blocking version of this call is particularly useful to receive a sequence of

mailbox messages from an SPE program without further need for synchronization.

The non-blocking version may be advantageous when using SPE events for

synchronization in a multi-threaded application.

spe_out_intr_mbox_status can be called to ensure that data can be written prior to

writing the SPU outbound interrupting mailbox.

RETURN VALUE

>0 the number of 32-bit mailbox messages read

0 (zero) no mailbox message could be read

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EIO The I/O error occurred.

Chapter 7. SPE MFC problem state facilities 67

EINVAL The specified pointer to the mailbox

message, the specified maximum number of

mailbox entries or the specified behavior is

invalid.

OPTIONS

Possible values for behavior are:

 Value Description

SPE_MBOX_ALL_BLOCKING The call blocks until all count mailbox

messages have been read.

SPE_MBOX_ANY_BLOCKING The call blocks until at least one mailbox

message has been read.

SPE_MBOX_ANY_NONBLOCKING The call reads as many mailbox messages as

possible up to a maximum of count without

blocking.

SEE ALSO

spe_out_intr_mbox_status(3)

68 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_out_intr_mbox_status

NAME

spe_out_intr_mbox_status - Fetch the status of the SPU outbound interrupt

mailbox.

SYNOPSIS

#include <libspe2.h>

int spe_out_intr_mbox_status (spe_context_ptr_t spe)

 Parameters

spe Specifies the SPE context for which the SPU

outbound mailbox has to be read.

DESCRIPTION

The spe_out_intr_mbox_status function fetches the status of the SPU outbound

interrupt mailbox for the SPE context specified by the spe parameter.

RETURN VALUE

>0 the number of 32-bit mailbox messages available for read

0 (zero) no data available (mailbox is empty)

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EIO The I/O error occurred.

SEE ALSO

spe_out_intr_mbox_read(3)

Chapter 7. SPE MFC problem state facilities 69

SPE SPU signal notification functions

The following describe the SPE SPU signal notification functions.

70 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_signal_write

NAME

spe_signal_write - Write data to the signal notification register specified by

signal_reg for the SPE context specified by the spe parameter

SYNOPSIS

#include <libspe2.h>

int spe_signal_write (spe_context_ptr_t spe, unsigned int signal_reg, unsigned

int data)

 Parameters

spe Specifies the SPE context of the signal

register to be written to.

signal_reg Specifies the signal notification register to be

written.

data The 32-bit data to be written to the specified

signal notification register.

RETURN VALUE

On success, 0 (zero) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EIO An I/O error occurred.

EINVAL The specified signal notification register is

invalid.

OPTIONS

Valid signal notification registers for signal_reg are:

 Flag Description

SPE_SIG_NOTIFY_REG_1 SPE signal notification register 1

SPE_SIG_NOTIFY_REG_2 SPE signal notification register 2

Chapter 7. SPE MFC problem state facilities 71

72 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 8. Direct SPE access for applications

This section describes how applications can access directly an SPE’s local store

memory and the various problem state registers.

The function spe_ls_area_get maps the local store of an SPE to the thread’s address

space. You can then access it like regular system memory. This is not recommended

for regular use because DMA operations to and from local store are generally more

efficient.

A more common use of the local store mapping is to communicate the effective

address of one SPE’s local store to another SPE, which allows SPEs to use DMA

operations to directly transfer data to and from another local store. This mode of

data transfer is very efficient, because the DMA transfers go directly from SPE to

SPE, and not through system memory.

The function spe_ps_area_get maps an area of an SPE’s problem state registers to

the thread’s address space. The problem state pointer can be used to directly access

problem state features without using library system calls.

Problem state features include multi-source synchronization, proxy DMAs,

mailboxes, and signal notifiers. These pointers, along with local store pointers (see

spe_ls_area_get), can also be used to perform and control SPE to SPE

communications through mailboxes, DMAs and signal notification.

When you use direct problem state access, you must ensure that applications

serialize multiple problem state operations appropriately. Also, when you use both

library and direct problem state operations, these must be properly serialized with

respect to each other. Otherwise, unexpected behavior, application errors, or both

can occur.

Note: (Linux) If you stop a running SPU by writing to SPE_RunCntrl, this does

not ensure that the Linux kernel (scheduler) is informed allowing it to reclaim the

SPE resources.

 73

Direct access functions

The following section describes the direct access functions.

74 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_ls_area_get

NAME

spe_ls_area_get - Map the local store of the SPE context.

SYNOPSIS

#include <libspe2.h>

void * spe_ls_area_get (spe_context_ptr_t spe)

 Parameters

spe Specifies the SPE context

DESCRIPTION

Maps the local store of the SPE context specified by spe to the thread’s address

space and returns a pointer to the start of the memory mapped local store area.

The size of the local store area can be obtained by using the function

spe_ls_size_get.

RETURN VALUE

On success, a pointer to the start of the memory mapped local store is returned.

EXIT STATUS

On error, NULL is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

ENOSYS Access to the local store of an SPE thread is

not supported by the operating system.

Chapter 8. Direct SPE access for applications 75

spe_ls_size_get

NAME

spe_ls_size_get - Obtain the size of the SPE local store in number of bytes.

SYNOPSIS

#include <libspe2.h>

int spe_ls_size_get (spe_context_ptr_t spe)

 Parameters

spe Specifies the SPE context

DESCRIPTION

The Cell Broadband Engine Architecture does not specify a fixed size for the SPE

local store. Applications that are intended to be portable across different

implementations of the CBEA should obtain the actual value through this call.

RETURN VALUE

On success, the SPE local store size (in bytes) is returned.

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified address of the SPE program is

invalid.

SEE ALSO

spe_image_open(3)

76 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_ps_area_get

NAME

spe_ps_area_get - Map the problem state area specified by ps_area of the SPE

context specified by spe to the thread’s address space.

SYNOPSIS

#include <libspe2.h>

void * spe_ps_area_get (spe_context_ptr_t spe, enum ps_area area)

 Parameters

spe The identifier of a specific SPE context.

ps_area The problem state area pointer to map.

DESCRIPTION

In order to obtain a problem state area pointer the specified SPE context must have

been created with the SPE_MAP_PS flag set.

RETURN VALUE

On success, a pointer to the requested problem state area is returned.

EXIT STATUS

On error, NULL is returned and errno is set to indicate the error.

Possible errors include:

 ESRCH The specified SPE context is invalid.

EACCES Permission for direct access to the specified

problem state area is denied or the SPE

context was not created with

memory-mapped problem state access.

EINVAL The specified problem state area is invalid.>

ENOSYS Access to the specified problem area for the

specified SPE context is not supported by

the operating system.

OPTIONS

The following are possible problem state values for the parameter ps_area:

 Problem state value Description

SPE_MSSYNC_AREA Return a pointer to the specified SPE’s MFC

multisource synchronization register problem state

area as defined by the following structure:

typedef struct spe_mssync_area

{

 unsigned int MFC_MSSync;

} spe_mssync_area_t;

Chapter 8. Direct SPE access for applications 77

SPE_MFC_COMMAND_AREA Return a pointer to the specified SPE’s MFC

command parameter and command queue control

area as defined by the following structure:

typedef struct spe_mfc_command_area {

 unsigned char reserved_0_3[4];

 unsigned int MFC_LSA;

 unsigned int MFC_EAH;

 unsigned int MFC_EAL;

 unsigned int MFC_Size_Tag;

 union {

 unsigned int MFC_ClassID_CMD;

 unsigned int MFC_CMDStatus;

 };

 unsigned char reserved_18_103[236];

 unsigned int MFC_QStatus;

 unsigned char reserved_108_203[252];

 unsigned int Prxy_QueryType;

 unsigned char reserved_208_21B[20];

 unsigned int Prxy_QueryMask;

 unsigned char reserved_220_22B[12];

 unsigned int Prxy_TagStatus;

} spe_mfc_command_area_t;

Note: The MFC_EAH and MFC_EAL registers can

be written simultaneously using a 64-bit store.

Likewise, MFC_Size_Tag and MFC_ClassID_CMD

registers can be written simultaneously using a

64-bit store.

SPE_CONTROL_AREA Return a pointer to the specified SPE’s SPU control

area as defined by the following structure:

typedef struct spe_spu_control_area {

 unsigned char reserved_0_3[4];

 unsigned int SPU_Out_Mbox;

 unsigned char reserved_8_B[4];

 unsigned int SPU_In_Mbox;

 unsigned char reserved_10_13[4];

 unsigned int SPU_Mbox_Stat;

 unsigned char reserved_18_1B[4];

 unsigned int SPU_RunCntl;

 unsigned char reserved_20_23[4];

 unsigned int SPU_Status;

 unsigned char reserved_28_33[12];

 unsigned int SPU_NPC;

} spe_spu_control_area_t;

SPE_SIG_NOTIFY_1_AREA Return a pointer to the specified SPE’s signal

notification area 1 as defined by the following

structure:

typedef struct spe_sig_notify_1_area {

 unsigned char reserved_0_B[12];

 unsigned int SPU_Sig_Notify_1;

} spe_sig_notify_1_area_t;

SPE_SIG_NOTIFY_2_AREA Return a pointer to the specified SPE’s signal

notification area 2 as defined by the following

structure:

typedef struct spe_sig_notify_2_area {

 unsigned char reserved_0_B[12];

 unsigned int SPU_Sig_Notify_2;

} spe_sig_notify_2_area_t;

78 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

SEE ALSO

spe_ls_area_get(3); spe_context_create(3)

The data structures specified above are defined in the header files of the library

implementation.

Chapter 8. Direct SPE access for applications 79

80 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Chapter 9. PPE-assisted library facilities

The SPEs in the Cell BE are designed to bear the computational workload of an

application. They are not well-suited for the general purpose code that is often

needed outside the ″compute kernels″ of an application.

The SPE Runtime Management Library provides the infrastructure that enables the

SPE program to issue a callback to the PPE-side of the SPE thread. From an SPE

program’s point of view, this mechanism allows certain functions to be offloaded

to the PPE.

To provide this functionality the SPE program uses the stop and signal instruction

(see note) with a signal type 0x21XX to stop the SPE and notify the PPE-side of the

SPE thread that the callback with number XX should be run. The SPE can also pass

4 bytes as an argument to the library function. This argument must immediately

follow the stop and signal instruction in the SPE local store.

Note: See C/C++ Language Extensions for Cell Broadband Engine Architecture, SPU

Control Intrinsics,spu_stop: stop and signal – (void) spu_stop(type)

Execution of the SPU program is stopped. The address of the stop instruction is

placed into the least significant bits of the SPU NPC register. The signal type is

written to the SPU status register, and the PPU is interrupted.

In libspe the execution of callbacks is handled inside the spe_context_run function.

It recognizes the SPE callback as a special stop reason, stop and signal with a

signal type in the range of 0x2100 to 0x21ff, and matches the lower 8 bit of the

signal type with a list of registered library callback function handlers, which are

then called. After the function returns, spe_context_run restarts SPE program

execution at the last SPU instruction counter plus 4, that is, it skips the argument

in the SPE local store.

The prototype of a valid library callback function handler must be:

int function_name (void *ls_base, unsigned int ls_address)

Parameters

ls_base

A pointer to the beginning of the memory-mapped SPE local store.

ls_address

the offset of the callback argument relative to ls_base in bytes.

Return values

On success, the function returns 0 (zero).

A non-zero return value is interpreted as failure. In this case, the SPE stops,

spe_context_run returns with an SPE_CALLBACK_ERROR, and this return value is

reported as part of stopinfo.

Example

A simple example of a callback that just prints its argument:

 81

/*

 * simple library callback handler

 */

int simple_handler (void *ls_base, unsigned int ls_address)

{

 int arg = *((int *)((char *)ls_base + ls_address));

 printf ("callback argument was %d \n", arg];

 return 0;

};

Before you can use a library callback function, you must use the libspe function

spe_callback_handler_register to register it. If an SPE program tries to use a

callback that has not been properly registered, the SPE stops and spe_context_run

returns with an SPE_CALLBACK _ERROR.

Implementations of libspe can reserve certain callback numbers for ″built-in″

functions:

Note: (Linux) The Cell BE Linux Reference Implementation Application Binary

Interface Specification reserves certain standardized library classes and call

opcodes. These correspond the following reserved callnums in libspe:

 0 ISO/IEC C Standard Header

1 POSIX.1 (IEEE Standard 1003.1)

2 POSIX.4

3 Operating system-dependent system calls

If invalid opcodes and/or invalid pointers are passed to callbacks corresponding to

these reserved callnums as their arguments, the callbacks return non-zero values to

indicate failure.

PPE-assisted library functions

The following section describes the PPE-assisted library functions.

82 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_callback_handler_register

NAME

spe_callback_handler_register - Register a user-defined function specified by the

function pointer handler as the library callback function identified by callnum.

SYNOPSIS

#include <libspe2.h>

int spe_callback_handler_register (void *handler, unsigned int callnum,

unsigned int mode)

 Parameters

handler A function pointer to the user-defined

callback handler.

callnum The identifier under which to register this

callback function. The valid range is 0..255.

mode Specifies if a new callback should be

registered or if an existing callback is being

updated by this call. If a new registration is

requested using a preexisting identifier for

callnum, the request fails. If an update is

requested for an unregistered value of

callnum, the request fails.

DESCRIPTION

The spe_callback_handler_register function registers a new user-defined function

specified by the function pointer as the library callback handler identified by

callnum or updates an existing registration. In either case, handler must be a valid

function pointer. and cannot be NULL. The function can also be used to update a

built-in function registration. If an application wants to make a temporary change

to an existing callback handler registration, it should first query the existing

handler, then update with its own, temporary handler, and once the temporary

handler is no longer required perform another update restoring the original

handler registration.

RETURN VALUE

On success, the function returns 0 (zero).

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 EINVAL Function argument error, for example,

callnum out of range.

ESRCH Error updating registration - no existing

registration found.

EACCES Error registering new callback - a callback is

already registered for this callnum.

Chapter 9. PPE-assisted library facilities 83

OPTIONS

Possible values of mode are as follows:

 Values Description

SPE_CALLBACK_NEW Register a new callback handler

SPE_CALLBACK_UPDATE Update registration of an existing callback

handler

SEE ALSO

spe_context_run(3)

For Linux, see also default_c99_handler.h and default_posix1_handler.h

84 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

spe_callback_handler_deregister

NAME

spe_callback_handler_deregister - Deregister the user-defined function identified

by callnum.

SYNOPSIS

#include <libspe2.h>

int spe_callback_handler_deregister (unsigned int callnum)

 Parameters

callnum The identifier of the function callback to be

deregistered. The valid range is 0..255.

DESCRIPTION

Note: (Linux) The reserved callbacks 0..3 cannot be deregistered. They can,

however, be overwritten with new, user-defined callbacks. See

spe_callback_handler_register().

RETURN VALUE

On success, the function returns 0 (zero).

EXIT STATUS

On error, -1 is returned and errno is set to indicate the error.

Possible errors include:

 EINVAL Function argument error, for example,

callnum out of range.

ESRCH No callback registered for callnum.

EACCES Attempt to deregister a reserved callback.

SEE ALSO

spe_context_run(3); spe_callback_handler_register(3)

Chapter 9. PPE-assisted library facilities 85

spe_callback_handler_query

NAME

spe_callback_handler_query - Returns the function pointer associated with a

callback number.

SYNOPSIS

#include <libspe2.h>

void *spe_callback_handler_query(unsigned int callnum)

 Parameters

callnum The function is identified by this callnum. The

valid range is 0..255.

DESCRIPTION

The function spe_callback_handler_query returns the function pointer associated

with a callback number.

RETURN VALUE

On success, the function returns the function pointer to the user-defined or built-in

callback handler registered for callnum.

EXIT STATUS

On error, 0 (zero) is returned and errno is set to indicate the error.

Possible errors include:

 EINVAL Function argument error, for example,

callnum not in valid range.

ESRCH No callback registered for callnum or no

registration for the provided function

pointer can be found.

86 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Appendix A. Data structures

This section summarizes the specified data structures upon which the libspe API

relies. These data structures are defined in the <libspe2.h> header file. Any libspe

application should include this header file.

SPE context

 /*

 * spe_context_ptr_t

 * This pointer serves as the identifier for a specific

 * SPE context throughout the API (where needed)

 */

typedef struct spe_context * spe_context_ptr_t;

SPE gang context

/*

 * spe_gang_context_ptr_t

 * This pointer serves as the identifier for a specific

 * SPE gang context throughout the API (where needed)

 */

typedef struct spe_gang_context * spe_gang_context_ptr_t;

SPE program handle

/*

 * SPE program handle

 * Structure spe_program_handle per CESOF specification

 * libspe2 applications usually only keep a pointer

 * to the program handle and do not use the structure

 * directly.

 */

typedef struct spe_program_handle {

 /*

 * handle_size allows for future extensions of the spe_program_handle

 * struct by new fields, without breaking compatibility with existing users.

 * Users of the new field would check whether the size is large enough.

 */

 unsigned int handle_size;

 void *elf_image;

 void *toe_shadow;

} spe_program_handle_t;

SPE runtime error information

/*

 * SPE stop information

 * This structure is used to return all information available

 * on the reason why an SPE program stopped execution.

 * This information is important for some advanced programming

 * patterns and/or detailed error reporting.

 */

/* spe_stop_info_t

 */

typedef struct spe_stop_info {

 unsigned int stop_reason;

 union {

 int spe_exit_code;

 int spe_signal_code;

 int spe_runtime_error;

 int spe_runtime_exception;

 87

int spe_runtime_fatal;

 int spe_callback_error;

 void *__reserved_ptr;

 unsigned long long __reserved_u64;

 } result;

 int spu_status;

} spe_stop_info_t;

SPE problem state areas

/* spe problem state areas

 */

typedef struct spe_mssync_area {

 unsigned int MFC_MSSync;

} spe_mssync_area_t;

typedef struct spe_mfc_command_area {

 unsigned char reserved_0_3[4];

 unsigned int MFC_LSA;

 unsigned int MFC_EAH;

 unsigned int MFC_EAL;

 unsigned int MFC_Size_Tag;

 union {

 unsigned int MFC_ClassID_CMD;

 unsigned int MFC_CMDStatus;

 };

 unsigned char reserved_18_103[236];

 unsigned int MFC_QStatus;

 unsigned char reserved_108_203[252];

 unsigned int Prxy_QueryType;

 unsigned char reserved_208_21B[20];

 unsigned int Prxy_QueryMask;

 unsigned char reserved_220_22B[12];

 unsigned int Prxy_TagStatus;

} spe_mfc_command_area_t;

typedef struct spe_spu_control_area {

 unsigned char reserved_0_3[4];

 unsigned int SPU_Out_Mbox;

 unsigned char reserved_8_B[4];

 unsigned int SPU_In_Mbox;

 unsigned char reserved_10_13[4];

 unsigned int SPU_Mbox_Stat;

 unsigned char reserved_18_1B[4];

 unsigned int SPU_RunCntl;

 unsigned char reserved_20_23[4];

 unsigned int SPU_Status;

 unsigned char reserved_28_33[12];

 unsigned int SPU_NPC;

} spe_spu_control_area_t;

typedef struct spe_sig_notify_1_area {

 unsigned char reserved_0_B[12];

 unsigned int SPU_Sig_Notify_1;

 } spe_sig_notify_1_area_t;

typedef struct spe_sig_notify_2_area {

 unsigned char reserved_0_B[12];

 unsigned int SPU_Sig_Notify_2;

 } spe_sig_notify_2_area_t;

SPE event structure

/*

 * SPE event structure

 * This structure is used for SPE event handling

 */

88 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

/*

 * spe_event_data_t

 * User data to be associated with an event

 */

typedef union spe_event_data {

 void *ptr;

 unsigned int u32;

 unsigned long long u64;

} spe_event_data_t;

/* spe_event_t

 */

typedef struct spe_event_unit {

 unsigned int events;

 spe_context_ptr_t spe;

 spe_event_data_t data;

} spe_event_unit_t;

Appendix A. Data structures 89

90 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Appendix B. Symbolic constants

This section summarizes the specified symbolic constants the libspe API relies on.

These symbols are defined in the <libspe2.h> header file. Any libspe application

should include this header file.

SPE context creation

 SPE_EVENTS_ENABLE Event handling is enabled on this SPE

context.

SPE_CFG_SIGNOTIFY1_OR Configure the SPU Signal Notification 1

Register to be in ″logical OR″ mode instead

of the default ″Overwrite″ mode.

SPE_CFG_SIGNOTIFY2_OR Configure the SPU Signal Notification 2

Register to be in ″logical OR″ mode instead

of the default ″Overwrite″ mode.

SPE_MAP_PS Request permission for memory-mapped

access to the SPE’s problem state area(s).

SPE_ISOLATED This context runs on an SPU in the isolation

mode. Programs loaded into contexts flagged

with SPE_ISOLATED must be be correctly

formatted for isolated execution.

SPE_ISOLATED_EMULATE Run this context on an SPU in an emulated

isolation mode. This mode provides

emulation of an isolated SPU without truly

being isolated as is intended for use by

developers who need access to debug tools

during the development of their isolated

applications. Programs loaded into contexts

flagged with SPE_ISOLATED_EMULATE

must be correctly formatted for isolated

emulation execution.

Note: (Linux) Proper operation of a PPE

assisted function call assumes the use of the

ISOLATED version of the SPE library

functions.

spe_gang_context_create

 <none> <none defined>

SPE run control

spe_context_run

 SPE_RUN_USER_REGS Specifies that the SPE setup registers r3, r4,

and r5 are initialized with the 48 bytes

pointed to by argp.

 91

SPE_NO_CALLBACKS Specifies that registered SPE library calls

(″callbacks″ from this library’s view) should

not be automatically executed. If a callback is

encountered, spe_context_run returns as if

the SPU would have issues a regular stop

and signal instruction. Details can then be

found in stopinfo.

spe_context_run; spe_stop_info_read

 SPE_EXIT SPE program terminated calling exit(code)

with code in the range 0..255. The code will

be saved in spe_exit_code.

SPE_STOP_AND_SIGNAL SPE program stopped because SPU executed

a stop and signal instruction. Further

information in spe_signal.

SPE_RUNTIME_ERROR SPE program stopped because of one of the

reasons found in spe_runtime_error.

Note: (Linux) The error

SPE_SPU_INVALID_INSTR is reported as a

Linux signal SIGILL if the SPE context was

created without the flag

SPE_EVENTS_ENABLE.

SPE_RUNTIME_EXCEPTION SPE program stopped asynchronously

because of a runtime exception (event)

described in spe_runtime_exception. In this

case, spe_status would be meaningless and is

therefore set to -1.

Note: (Linux) This error situation can only

be caught and reported by spe_context_run if

the SPE context was created with the flag

SPE_EVENTS_ENABLE indicating that event

support is requested. Otherwise the Linux

kernel generates a signal to indicate the

runtime error.

SPE_RUNTIME_FATAL SPE program stopped for other reasons,

usually fatal operating system errors such as

insufficient resources. Further information in

spe_runtime_fatal

In this case, spe_status would be meaningless

and is therefore set to -1.

SPE_CALLBACK_ERROR An SPE program tried to use unregistered

library callback, or a library callback returned

a non-zero exit value, which is provided in

spe_callback_error.

SPE_ISOLATION_ERROR The SPE isolation system mechanism has

detected an error when attempting to load

the isolated SPE program.

SPE_DMA_ALIGNMENT A DMA alignment error occurred.

SPE_DMA_SEGMENTATION A DMA segmentation error occurred.

SPE_DMA_STORAGE A DMA storage error occurred.

SPE_INVALID_DMA An invalid DMA error.

92 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

SPE_SPU_HALT SPU was stopped by halt

SPE_SPU_SINGLE_STEP SPU is in single-step mode

SPE_SPU_INVALID_INSTR SPU has tried to run an invalid instruction

SPE_SPU_INVALID_CHANNEL SPU has tried to access an invalid channel

SPE events

 SPE_EVENT_OUT_INTR_MBOX Data available to be read from the SPU

outbound interrupting mailbox. This event

will be generated, if the SPU has written at

least one entry to the SPU outbound

interrupting mailbox (see

spe_out_intr_mbox_read).

SPE_EVENT_IN_MBOX Data can now be written to the SPU inbound

mailbox. This event will be generated, if the

SPU inbound mailbox had been full and the

SPU read at least on entry, so that now it can

be written to the SPU inbound mailbox again

(see spe_in_mbox write).

SPE_EVENT_TAG_GROUP An SPU event tag group signaled completion

(see spe_tag_group_read).

SPE_EVENT_SPE_STOPPED Program execution on the SPE has stopped

(see spe_stop_info_read).

SPE_EVENT_ALL_EVENTS Interest in all defined SPE events. This

corresponds to a bit-wise OR of all flags

above.

SPE tag group completion facility

 SPE_TAG_ALL The function suspends execution until all

DMA commands in the tag groups enabled

by the mask parameter have no outstanding

DMAs in the proxy command queue of the

SPE context specified by spe. The masked tag

status is returned.

SPE_TAG_ANY The function suspends execution until any

DMA commands in the tag groups enabled

by the mask parameter have no outstanding

DMAs in the proxy command queue of the

SPE context specified by spe. The masked tag

status is returned.

SPE_TAG_IMMEDIATE The function returns the tag status for the tag

groups specified by the mask parameter for

the proxy command queue of the SPE

context specified by the spe.

SPE mailbox facility

 SPE_MBOX_ALL_BLOCKING The call blocks until all count mailbox

messages have been read.

SPE_MBOX_ANY_BLOCKING The call blocks until at least one mailbox

message has been read.

Appendix B. Symbolic constants 93

SPE_MBOX_ANY_NONBLOCKING The call reads as many mailbox messages as

possible up to a maximum of count without

blocking.

SPE problem state areas

 SPE_MSSYNC_AREA MFC multisource synchronization register

problem state area.

SPE_MFC_COMMAND_AREA MFC command parameter and command

queue control area.

SPE_CONTROL_AREA SPE control area.

SPE_SIG_NOTIFY_1_AREA SPE signal notification area 1.

SPE_SIG_NOTIFY_2_AREA SPE signal notification area 2.

spe_cpu_info_get

 SPE_COUNT_PHYSICAL_CPU_NODES Requests the number of physical CPU nodes

of the system.

SPE_COUNT_PHYSICAL_SPES Requests the total number of physical SPEs

available either on the whole system or on a

specified node.

SPE_COUNT_USABLE_SPES Requests the number of SPEs that can

actually be used by the application at this

point in time.

SPE_CPU_IS_CELLBE Identifies the CPU as a Cell BE CPU.

SPE_CPU_IS_CELLEDP Identifies the CPU as a CelleDP CPU with

enhanced SPU double precision capabilities.

spe_callback_handler_register

 SPE_CALLBACK_NEW Register a new callback handler.

SPE_CALLBACK_UPDATE Update registration of an existing callback

handler.

94 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Appendix C. Related documentation

This topic helps you find related information.

Document location

Links to documentation for the SDK are provided on the developerWorks® Web

site located at:

http://www.ibm.com/developerworks/power/cell/

Click the Docs tab.

The following documents are available, organized by category:

Architecture

v Cell Broadband Engine Architecture

v Cell Broadband Engine Registers

v SPU Instruction Set Architecture

Standards

v C/C++ Language Extensions for Cell Broadband Engine Architecture

v Cell Broadband Engine Linux Reference Implementation Application Binary Interface

Specification

v SIMD Math Library Specification for Cell Broadband Engine Architecture

v SPU Application Binary Interface Specification

v SPU Assembly Language Specification

Programming

v Cell Broadband Engine Programmer’s Guide

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Programming Tutorial

Library

v Accelerated Library Framework for Cell Programmer’s Guide and API Reference

v Accelerated Library Framework for Hybrid-x86 Programmer’s Guide and API Reference

v Basic Linear Algebra Subprograms Programmer’s Guide and API Reference

v Cell Broadband Engine Monte Carlo Library API Reference Manual

v Data Communication and Synchronization for Cell Programmer’s Guide and API

Reference

v Data Communication and Synchronization for Hybrid-x86 Programmer’s Guide and

API Reference

v Example Library API Reference

v Mathematical Acceleration Subsystem (MASS)

v SDK 3.0 SIMD Math Library API Reference

v SPE Runtime Management Library

v SPE Runtime Management Library Version 1 to Version 2 Migration Guide

v SPU Timer Library

 95

http://www.ibm.com/developerworks/power/cell/

Installation

v SDK for Multicore Acceleration Version 3.0 Installation Guide

Tools

v Getting Started - XL C/C++ Advanced Edition for Linux

v Compiler Reference - XL C/C++ Advanced Edition for Linux

v Language Reference - XL C/C++ Advanced Edition for Linux

v Programming Guide - XL C/C++ Advanced Edition for Linux

v Installation Guide - XL C/C++ Advanced Edition for Linux

v Getting Started - XL Fortran Advanced Edition for Linux

v Compiler Reference - XL Fortran Advanced Edition for Linux

v Language Reference - XL Fortran Advanced Edition for Linux

v Optimization and Programming Guide - XL Fortran Advanced Edition for Linux

v Installation Guide - XL Fortran Advanced Edition for Linux

v Using the single-source compiler

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator User’s Guide

v IBM Visual Performance Analyzer User’s Guide

PowerPC Base

v PowerPC Architecture™ Book

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual

96 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Appendix D. Accessibility features

Accessibility features help users who have a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

v Keyboard-only operation

v Interfaces that are commonly used by screen readers

v Keys that are tactilely discernible and do not activate just by touching them

v Industry-standard devices for ports and connectors

v The attachment of alternative input and output devices

IBM® and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able/ for more

information about the commitment that IBM has to accessibility.

 97

http://www.ibm.com/able/

98 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

 99

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

100 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

alphaWorks

BladeCenter

developerWorks

IBM

POWER

Power PC

PowerPC

PowerPC Architecture

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer

Entertainment, Inc., in the United States, other countries, or both and is used under

license therefrom

Intel®, Intel Inside® (logos), MMX, and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Microsoft®, Windows®, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United

States and other countries.

UNIX® is a registered trademark of The Open Group in the United States and

other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 101

102 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Glossary

This glossary contains terms and abbreviations

used in libspe and Cell/B.E. systems.

ELF

Executable and Linking Format. The standard

object format for many UNIX operating systems,

including Linux. Compilers generate ELF files.

Linkers link to files with ELF files in libraries.

Systems run ELF files.

Gang context

The SPE gang context is one of the base data

structures for the libspe implementation. It holds

all persistent information about a group of SPE

contexts that should be treated as a gang, that is,

be executed together with certain properties. This

data structure should not be accessed directly;

instead the application uses a pointer to an SPE

gang context as an identifier for the SPE gang it is

dealing with through libspe API calls.

LS

Local Store. The 256-KB local store associated

with each SPE. It holds both instructions and

data.

Main thread

The application’s main thread. In many cases,

CBEA programs are multi-threaded using

multiple SPEs running concurrently. A typical

scenario is that the application consists of a main

thread that creates as many SPE threads as

needed and ″orchestrates″ them.

MFC

Memory Flow Controller. Part of an SPE which

provides two main functions: it moves data via

DMA between the SPE’s local store (LS) and main

storage, and it synchronizes the SPU with the rest

of the processing units in the system.

PPE

PowerPC Processor Element. The general-purpose

processor in the Cell BE processor.

SPE

Synergistic Processor Element. It includes a SPU,

a MFC, and a LS.

SPE context

The SPE context is one of the base data structures

for the libspe implementation. It holds all

persistent information about a ″logical SPE″ used

by the application. This data structure should not

be accessed directly; instead the application uses a

pointer to an SPE context as an identifier for the

″logical SPE″ it is dealing with through libspe API

calls.

SPE event

In a multi-threaded environment, it is often

convenient to use an event mechanism for

asynchronous notification. A common usage is

that the main thread sets up an event handler to

receive notification about certain events caused by

the asynchronously running SPE threads. The

current library supports events to indicate that an

SPE has stopped execution, mailbox messages

being written or read by an SPE, and

PPE-initiated DMA operations have completed.

SPE thread

A thread scheduled and run on a SPE. A program

has one or more SPE threads. Each such thread

has its own SPU local store (LS),.128 x 128-bit

register file, program counter, and MFC

Command Queues, and it can communicate with

other execution units (or with effective-address

memory through the MFC channel interface). The

API call spe_context_run is a synchronous,

blocking call from the perspective of the thread

using it, that is, while an SPE program is

executed, the associated SPE thread blocks and is

usually put to ″sleep″ by the operating system.

SPU

Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

 103

104 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Index

D
data structure 87

SPE context 87

SPE event structure 88

SPE gang context 87

SPE problem state areas 88

SPE program handle 87

SPE runtime error information 87

direct SPE access
spe_ls_area_get 75

spe_ls_size_get 76

spe_ps_area_get 77

documentation 95

P
PPE-assisted library

spe_callback_handler_deregister 85

spe_callback_handler_query 86

spe_callback_handler_register 83

S
SDK documentation 95

SPE context
data structure 87

SPE context creation
spe_context_create 6

spe_context_destroy 8

spe_gang_context_create 9

spe_gang_context_destroy 10

SPE event handling
spe_event_handler_create 34

spe_event_handler_deregister 36

spe_event_handler_destroy 35

spe_event_handler_register 38

spe_event_wait 40

SPE event structure
data structure 88

SPE gang context
data structure 87

SPE mailbox functions
spe_in_mbox_status 66

spe_in_mbox_write 64

spe_out_intr_mbox_read 67

spe_out_intr_mbox_status 69

spe_out_mbox_read 62

spe_out_mbox_status 63

symbolic constants 93

SPE MFC problem state facilities
spe_mfcio_get 49

spe_mfcio_getb 51

spe_mfcio_getf 53

spe_mfcio_put 43

spe_mfcio_putb 45

spe_mfcio_putf 47

spe_mssync_start 56

spe_mssync_status 57

SPE MFC proxy tag group
spe_mfcio_tag_status_read 59

SPE problem state areas
data structure 88

symbolic constants 94

SPE program handle
data structure 87

SPE program image handling
spe_image_close 22

spe_image_open 20

spe_program_load 23

SPE run control
spe_context_run 26

spe_stop_info_read 31

SPE runtime error information
data structure 87

SPE signal notification
spe_cpu_info_get 16

spe_signal_write 71

SPE tag group completion
symbolic constants 93

spe_callback_handler_deregister 85

spe_callback_handler_query 86

spe_callback_handler_register 83

symbolic constatns 94

spe_context_create 6

symbolic constants 91

spe_context_destroy 8

spe_context_run 26

symbolic constants 91

spe_cpu_info_get 16

symbolic constatns 94

spe_event_handler_create 34

spe_event_handler_deregister 36

spe_event_handler_destroy 35

spe_event_handler_register 38

spe_event_wait 40

spe_events
symbolic constants 93

spe_gang_context_create 9

symbolic constants 91

spe_gang_context_destroy 10

spe_image_close 22

spe_image_open 20

spe_in_mbox_status 66

spe_in_mbox_write 64

spe_ls_area_get 75

spe_ls_size_get 76

spe_mfcio_get 49

spe_mfcio_getb 51

spe_mfcio_getf 53

spe_mfcio_put 43

spe_mfcio_putb 45

spe_mfcio_putf 47

spe_mfcio_tag_status_read 59

spe_mssync_start 56

spe_mssync_status 57

spe_out_intr_mbox_read 67

spe_out_intr_mbox_status 69

spe_out_mbox_read 62

spe_out_mbox_status 63

spe_program_load 23

spe_ps_area_get 77

spe_signal_write 71

spe_stop_info_read 31

symbolic constants 92

symbolic constants 91

SPE mailbox functions 93

SPE problem state areas 94

SPE tag group completion 93

spe_callback_handler_register 94

spe_context_create 91

spe_context_run 91

spe_cpu_info_get 94

spe_events 93

spe_gang_context_create 91

spe_stop_info_read 92

synchronization 55

 105

106 CBEA JSRE Series: SPE Runtime Management Library Version 2.2

Readers’ Comments — We’d Like to Hear from You

CBEA JSRE Series

Cell Broadband Engine Architecture Joint Software Reference Environment Series
SPE Runtime Management Library

Version 2.2

 Publication No. SC33-8334-01

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: +49-7031-16-3456

v Send your comments via e-mail to: eservdoc@de.ibm.com

v Send a note from the web page:

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC33-8334-01

SC33-8334-01

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH

Department 3248

Schoenaicherstrasse 220

D -71032 Boeblingen

Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

SC33-8334-01

	Preface
	Contents
	Chapter 1. Overview
	Chapter 2. SPE context creation
	SPE context creation functions
	spe_context_create
	spe_context_destroy
	spe_gang_context_create
	spe_gang_context_destroy
	spe_context_create_affinity

	Chapter 3. CPU information
	spe_cpu_info_get

	Chapter 4. SPE program image handling
	SPE image functions
	spe_image_open
	spe_image_close
	spe_program_load

	Chapter 5. SPE run control
	SPE run functions
	spe_context_run
	spe_stop_info_read

	Chapter 6. SPE event handling
	SPE event functions
	spe_event_handler_create
	spe_event_handler_destroy
	spe_event_handler_deregister
	spe_event_handler_register
	spe_event_wait

	Chapter 7. SPE MFC problem state facilities
	SPE MFC proxy command functions
	spe_mfcio_put
	spe_mfcio_putb
	spe_mfcio_putf
	spe_mfcio_get
	spe_mfcio_getb
	spe_mfcio_getf
	SPE MFC multi-source synchronization functions
	spe_mssync_start
	spe_mssync_status
	SPE MFC proxy tag-group completion functions
	spe_mfcio_tag_status_read
	SPE mailbox functions
	spe_out_mbox_read
	spe_out_mbox_status
	spe_in_mbox_write
	spe_in_mbox_status
	spe_out_intr_mbox_read
	spe_out_intr_mbox_status
	SPE SPU signal notification functions
	spe_signal_write

	Chapter 8. Direct SPE access for applications
	Direct access functions
	spe_ls_area_get
	spe_ls_size_get
	spe_ps_area_get

	Chapter 9. PPE-assisted library facilities
	PPE-assisted library functions
	spe_callback_handler_register
	spe_callback_handler_deregister
	spe_callback_handler_query

	Appendix A. Data structures
	Appendix B. Symbolic constants
	Appendix C. Related documentation
	Appendix D. Accessibility features
	Notices
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

