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About This Book

The primary objective of this manual is to help programmers provide software that is compatible with the 
family of PowerPC® processors using the vector/single instruction stream, multiple data stream (SIMD) multi-
media extension (vector processing) technology. This book describes how the vector processing technology 
relates to the 64-bit portion of the PowerPC Architecture.™ 

To locate any published errata or updates for this document, see http://www.ibm.com/chips.

The Vector/SIMD Multimedia Extension Technology Programming Environments Manual (Vector Processing 
PEM) is used as a reference guide for programmers. The Vector Processing PEM provides a description that 
includes the instruction format and figures to help in understanding how each instruction works.

Because it is important to distinguish between the levels of the PowerPC Architecture in order to ensure 
compatibility across multiple platforms, those distinctions are shown clearly throughout this book. Most of the 
discussions about the vector processing technology are at the UISA level. 

This document stays consistent with the PowerPC Architecture in referring to three levels, or programming 
environments, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to 
which user-level software should conform. The UISA defines the base user-level instruction set, user-
level registers, data types, memory conventions, and the memory and programming models seen by 
application programmers. 

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest component of the 
PowerPC Architecture, defines additional user-level functionality that falls outside typical user-level soft-
ware requirements. The VEA describes the memory model for an environment in which multiple proces-
sors or other devices can access external memory, and defines aspects of the cache model and cache 
control instructions from a user-level perspective. The resources defined by the VEA are particularly use-
ful for optimizing memory accesses and for managing resources in an environment in which other proces-
sors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not necessarily 
adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level resources typi-
cally required by an operating system. The OEA defines the PowerPC memory management model, 
supervisor-level registers, and the exception model. 

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

For ease in reference, this book and the processor user’s manuals have arranged the architecture informa-
tion into topics that build upon one another, beginning with a description and complete summary of registers 
and instructions (for all three environments) and progressing to more specialized topics such as the cache, 
exception, and memory management models. As such, chapters may include information from multiple levels 
of the architecture but when discussing OEA and VEA, this will be noted in the text. 

It is beyond the scope of this manual to describe individual vector processing technology implementations on 
PowerPC processors. It must be kept in mind that each PowerPC processor is unique in its implementation of 
the vector technology.

The information in this book is subject to change without notice, as described in the disclaimers on the title 
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are 
using the most recent version of the documentation. 

http://www-03.ibm.com/chips/
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Audience

This manual is intended for system software and hardware developers and application programmers who 
want to develop products using the vector/SIMD multimedia technology extension to the PowerPC proces-
sors in general. It is assumed that the reader understands operating systems, microprocessor system design, 
and the basic principles of reduced instruction set computer (RISC) processing.

This book describes how the vector processing technology interacts with the 64-bit portion of the PowerPC 
Architecture.

Organization

A summary and a brief description of the major sections of this manual follows:

• Chapter 1, Overview is useful for those who want a general understanding of the features and functions 
of the vector processing technology. This chapter provides an overview of how the vector technology 
defines the register set, operand conventions, addressing modes, instruction set, cache model, and 
exception model.

• Chapter 2, Vector Register Set is useful for software engineers who need to understand the PowerPC 
programming model for the three programming environments. The chapter also discusses the functional-
ity of the vector processing technology registers and how they interact with the other PowerPC registers. 

• Chapter 3, Operand Conventions describes how the vector technology interacts with the PowerPC con-
ventions for storing data in memory, including information about alignment and single-precision floating-
point conventions.

• Chapter 4, Addressing Modes and Instruction Set Summary provides an overview of the vector process-
ing technology addressing modes and a brief description of the vector processing technology instructions 
organized by function.

• Chapter 5, Cache, Exceptions, and Memory Management provides a discussion of the cache and mem-
ory model defined by the VEA and aspects of the cache model that are defined by the OEA. It also 
describes the exception model defined in the UISA.

• Chapter 6, Vector Processing Instructions functions as a handbook for the vector instruction set. Instruc-
tions are sorted by mnemonic. Each instruction description includes the instruction formats and figures 
where it helps in understanding what the instruction does.

• Appendix A., Vector Processing Instruction Set Listings lists all the vector instructions. Instructions are 
grouped according to mnemonic, opcode, and form.

• This manual also includes a glossary.

Suggested Reading

This section lists additional reading that provides background for the information in this manual, as well as 
general information about the vector processing technology and PowerPC Architecture. 
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General Information

The following documentation provides useful information about the PowerPC Architecture and computer 
architecture in general:

• The following books are available via many online bookstores. 

– The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition, by 
International Business Machines, Inc.1994.
Note:  This book has been superseded by PowerPC Architecture Books I-III, Version 2.02, which are 
available at www.ibm.com/powerpc. 

– PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture, by Apple 
Computer, Inc., International Business Machines, Inc., and Motorola, Inc.

– Macintosh Technology in the Common Hardware Reference Platform, by Apple Computer, Inc.

– Computer Architecture: A Quantitative Approach, Second Edition, by 
John L. Hennessy and David A. Patterson.

• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing Company, One Jacob Way, 
Reading, MA, 01867.

• PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books Worldwide, Inc., 919 East 
Hillsdale Boulevard, Suite 400, Foster City, CA, 94404.

PowerPC Documentation

Some additional PowerPC documentation is available via the internet at http://www.ibm.com/chips/techlib.

• User’s manuals—These books provide details about individual PowerPC implementations and are 
intended to be used in conjunction with the Programming Environments Manuals. 

• Addenda/errata to user’s manuals—Because some processors have follow-on parts, an addendum might 
be provided that describes the additional features and changes to functionality of the follow-on part. 
These addenda are intended for use with the corresponding user’s manuals. 

• Programming environments manuals (PEM)—These books provide information about resources defined 
by the PowerPC Architecture that are common to PowerPC processors. There are several versions, one 
that describes the functionality of the 32-bit architecture model and one that describes the 64-bit model. 

– PowerPC Microprocessor Family: The Programming Environments Manual for 64-Bit Microproces-
sors.

– PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors.

• Datasheets—Datasheets provide specific data regarding bus timing, signal behavior, and ac, dc, and 
thermal characteristics, as well as other design considerations for each PowerPC implementation. 

• PowerPC Microprocessor Family: The Programmer’s Reference Guide: MPRPPCPRG-01 is a concise 
reference that includes the register summary, memory control model, exception vectors, and the 
PowerPC instruction set.

• PowerPC Quick Reference Guide: This brochure is a quick reference guide to IBM's portfolio of industry-
leading PowerPC technology. It includes highlights and specifications for the PowerPC 405, PowerPC 
440, PowerPC 750, and PowerPC 970 based standard products.

• PowerPC User Instruction Set Architecture, Book I (Version 2.02)–This book defines the instructions, reg-
isters, and so forth, typically used by application programs (for example, Branch, Load, Store, and Arith-

http://www-128.ibm.com/developerworks/eserver/articles/archguide.html?S_TACT=105AGX16&S_CMP=DWPA
http://www.ibm.com/chips/techlib
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metic instructions; general purpose and floating-point registers). All Book I facilities and instructions are 
nonprivileged (are available in problem state). 

• PowerPC Virtual Environment Architecture, Book II (Version 2.02)–This book defines the memory model 
(caches, memory access ordering, and so forth) and related instructions, such as the instructions used to 
manage caches and to synchronize memory accesses when memory is shared among programs running 
on different processors. All Book II facilities and instructions are nonprivileged, but they are typically used 
via operating-system-provided library subroutines, which application programs call as needed. 

• PowerPC Operating Environment Architecture, Book III (Version 2.02) –This book defines the privileged 
facilities and related instructions (address translation, memory protection, interruptions, and so forth). 
Nearly all Book III facilities and instructions are privileged. (Those that are nonprivileged are described 
also in Book I or II, but only at the level needed by application programmers.) 

• Application notes—These short documents contain useful information about specific design issues useful 
to programmers and engineers working with PowerPC processors. 

• Documentation for support chips.

Additional literature on PowerPC implementations is being released as new processors become available. 
For a current list of PowerPC documentation, see http://www.ibm.com/chips.

http://www.ibm.com/chips
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Conventions

Throughout the documentation, when a register or bit is “set” it means the register or bit is set to ‘1’, and when 
a register is “cleared” it means the register or bit is set to ‘0’.

This document uses the following notational conventions: 

Additional conventions used with instruction encodings are described in Chapter 6, Vector Processing 
Instructions.

mnemonics Instruction mnemonics are shown in lowercase bold. 

italics Italics indicate variable instruction parameters, for example, bcctrx.
Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source general-purpose register (GPR)

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source floating-point register (FPR)

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, 
fields, or ranges appear in brackets. For example, MSR[DR] refers to the data 
address translation enable bit in the machine state register.

vA, vB, vC Instruction syntax used to identify a source Vector Register (VR)

vD Instruction syntax used to identify a destination VR

x In certain contexts, such as a signal encoding, this indicates a don’t care. 

n Used to express an undefined numeric value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits may be written 
to as either ones or zeros, they are always read as zeros. 

0 0 0 0 
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Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document. Note that the meanings for 
some acronyms are historical, and the words for which an acronym stands may not be intuitively obvious. 

Table i. Acronyms and Abbreviated Terms (Page 1 of 2) 

Term Meaning

ALU Arithmetic logic unit

ASR Address Space Register

BPU Branch processing unit

CR Condition Register 

CTR Count Register 

DAR Data Address Register 

DEC Decrementer Register

DSISR Register used for determining the source of a data storage interrupt (DSI) exception

EA Effective address

ECC Error checking and correction

FPR Floating-point register

FPSCR Floating-Point Status and Control Register 

FPU Floating-point unit

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

IU Integer unit

L2 Secondary cache 

LIFO Last-in-first-out

LR Link Register 

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSQ Least-significant quadword

lsq Least-significant quadword

MERSI Modified/exclusive/reserved/shared/invalid—cache coherency protocol

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSQ Most-significant quadword

msq Most-significant quadword

MSR Machine State Register 

NaN Not a number
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NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PTEG Page table entry group

RISC Reduced instruction set computing

RTL Register transfer language

RWITM Read with intent to modify

SIMM Signed immediate value

SPR Special-purpose register

SR Segment Register

SRR0 Machine Status Save/Restore Register 0 

SRR1 Machine Status Save/Restore Register 1

STE Segment table entry

TB Time Base Register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

VPU Vector processing unit

VR Vector Register

Table i. Acronyms and Abbreviated Terms (Page 2 of 2) 

Term Meaning
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Terminology Conventions

Table ii lists certain terms used in this manual that differ from the architecture terminology conventions. 

Table iii describes instruction field notation conventions used in this manual. 

Table ii. Terminology Conventions  

The Architecture Specification This Manual

Data storage interrupt DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception 

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access 

Swizzling Doubleword swap

Table iii. Instruction Field Conventions  

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

VA, VB, VT, VS vA, vB, vD, vS (respectively)

VEC Vector processing technology

/, //, /// 0...0 (shaded)
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1. Overview

The vector/single instruction stream, multiple data stream (SIMD) multimedia extension technology provides 
a software model that accelerates the performance of various software applications and runs on reduced 
instruction set computing (RISC) microprocessors. The vector processing technology is a short vector parallel 
architecture that extends the instruction set architecture (ISA) of the PowerPC Architecture. The Vector ISA is 
based on separate vector/SIMD-style execution units that have high data parallelism. That is, the vector 
processing technology operations can perform on multiple data elements in a single instruction. The term 
“vector” in this document refers to the spatial parallel processing of short, fixed-length one-dimensional 
matrices performed by an execution unit. It should not be confused with the temporal parallel (pipelined) 
processing of long, variable-length vectors performed by classical vector machines. High degrees of paral-
lelism are achievable with simple in-order instruction dispatch and low-instruction bandwidth. However, the 
ISA is designed not to impede additional parallelism through superscalar dispatch to multiple execution units 
or multithreaded execution unit pipelines. 

The Vector ISA supports the following audio and visual applications:

• Voice over IP (VoIP). VoIP transmits voice as compressed digital data packets over the internet.

• Access Concentrators/DSLAMs. An access concentrator strips data traffic off of plain old telephone ser-
vice (POTS) lines and inserts it into the Internet. A digital subscriber line access multiplexer (DSLAM) 
pulls data off at a switch and immediately routes it to the Internet. This allows it to concentrate asymmet-
ric digital subscriber line (ADSL) digital traffic at the switch and off-load the network.

• Speech recognition. Speech processing allows voice recognition for use in applications like directory 
assistance and automatic dialing.

• Voice/Sound Processing (audio decode and encode): G.711, G.721, G.723, G,729A, and AC-3. Voice 
processing is used to improve sound quality on lines.

• Communications:

– Multichannel modems.
– Software modem: V.34, 56K.
– Data encryption: RSA.
– Modem banks can use the vector processing technology to replace signal processors in digital signal 

processor (DSP) farms.

• 2D and 3D graphics: QuickDraw, OpenGL, virtual reality modeling language (VRML), games, entertain-
ment, high-precision computer aided design (CAD).

• Virtual reality.

• High-fidelity audio: 3D audio, AC-3. Hi-Fi audio uses the vector processor’s floating-point unit (FPU).

• Image and video processing: JPEG, Filters.

• Echo cancellation. The echo cancellation is used to eliminate echo build up on long landline calls.

• Array number processing.

• Base station processing. Cellular base station compresses digital voice data for transmission within the 
Internet.

• High bandwidth data communication.

• Motion video decode and encode: MPEG-1, MPEG-2, MPEG-4, and H.234.

• Real-time continuous speech I/O: HMM, Viterbi acceleration, Neural algorithms. 

• Video conferencing: H.261, H.263.

• Machine intelligence.
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All vector instructions are designed to be easily pipelined with pipeline latencies no greater than scalar, 
double-precision, floating-point multiply-add. No instruction specifies an operation that presents a frequency 
limitation beyond those already imposed by existing PowerPC instructions. There are no operating mode 
switches that preclude fine grain interleaving of instructions with the existing floating-point and integer instruc-
tions. Parallelism with the integer and floating-point instructions is simplified by the fact that the vector unit 
never generates an exception and has few shared resources or communication paths that require it to be 
tightly synchronized with the other units. By using the SIMD parallelism, performance can be accelerated on 
PowerPC processors to a level that can allow concurrent real-time processing of one or more data streams. 

In this document, the term “implementation” refers to a hardware device (typically a microprocessor) that 
complies with the PowerPC Architecture. 

The vector processing technology can be used as an extension to various RISC microprocessors; however, 
in this book it is discussed within the context of the PowerPC Architecture described as follows:

• Programming model

– Instruction set. The vector instruction set specifies instructions that extend the PowerPC instruction 
set. These instructions are organized similar to PowerPC instructions (such as vector load/store, vec-
tor integer, and vector floating-point instructions). The specific instructions, and the forms used for 
encoding them, are provided in Appendix A. Vector Processing Instruction Set Listings.

– Register set. The vector programming model defines new vector registers, additions to the PowerPC 
register set, and how existing PowerPC registers are affected by the vector processing technology. 
The model also discusses memory conventions, including details regarding the byte ordering for 
quadwords.

• Memory model. The vector processing technology specifies additional cache management instructions. 
That is, a program can execute vector software instructions that indicate when a sequence of memory 
units (data stream/stream) are likely to be accessed. 

• Exception model. To ensure efficiency, the vector processing technology provides only a Vector Process-
ing Unit (VPU) Unavailable Interrupt (VUI) exception, a data storage interrupt (DSI) exception, and a trace 
exception (if implemented). There are no exceptions other than DSI exceptions on loads and stores. The 
vector instructions can cause PowerPC exceptions. 

• Memory management model. The memory model for the vector processing technology is the same as it 
is implemented for the PowerPC Architecture. Vector processing memory accesses are always assumed 
to be aligned. If an operand is unaligned, additional vector instructions are used to ensure that it is cor-
rectly placed in a vector register or in memory.

• Time-keeping model. The PowerPC time-keeping model is not impacted by the vector processing tech-
nology.

This chapter provides an overview of the major characteristics of the vector processing technology in the 
order in which they are addressed in this book:

• Register set and programming model

• Instruction set and addressing modes

• Cache, exceptions, and memory management
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1.1 Vector Processing Technology Overview

The vector processing technology’s SIMD-style extension provides an approach to accelerating the 
processing of data streams. Using the vector instructions can provide a significant speedup for communica-
tions, multimedia, and other performance-driven applications by using data-level parallelism where available, 
matching scalar performance in serial sections of media applications, keeping media processing within the 
vector processing unit (VPU), and minimizing bandwidth and latency memory access bottlenecks. 

Vector processing technology expands the PowerPC Architecture through the addition of a 128-bit vector 
execution unit, which operates concurrently with the existing integer and floating-point units. The new vector 
execution unit provides highly parallel operations, allowing for simultaneous execution of multiple operations 
in a single clock cycle.

The vector processing technology can be thought of as a set of registers and execution units that can be 
added to the PowerPC Architecture in a manner analogous to the addition of floating-point units. Floating-
point units were added to provide support for high-precision scientific calculations and the vector processing 
technology is added to accelerate the next level of performance-driven, high-bandwidth communications and 
computing applications. Figure 1-1 provides the high-level structural overview for PowerPC with the vector 
processing technology.
.

The vector processing technology is purposefully simple, such that there are no exceptions other than DSI 
exceptions on loads and stores and no complex functions. The vector processing technology is scaled down 
to only the necessary pieces in order to facilitate efficient cycle time, latency, and throughput on hardware 
implementations.

Figure 1-1. High-Level Structural Overview of PowerPC with Vector Processing Technology 
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The vector processing technology defines the following features:

• Fixed 128-bit wide vector length that can be subdivided into sixteen 8-bit bytes, eight 16-bit halfwords, or 
four 32-bit words.

• Vector register file (VRF) architecturally separate from floating-point registers (FPRs) and general-pur-
pose registers (GPRs).

• Vector integer and floating-point arithmetic.

• Four operands for most instructions (three source operands and one result).

• Saturation clamping, (that is, unsigned results are clamped to zero on underflow and to the maximum 
positive integer value (2n-1, for example, 255 for byte fields) on overflow. For signed results, saturation 
clamps the result to the smallest representable negative number (-2n-1, for example, -128 for byte fields) 
on underflow, and to the largest representable positive number (2n-1-1, for example, +127 for byte fields) 
on overflow). 

• No mode switching that would increase the overhead of using the instructions.

• Operations selected based on utility to digital signal processing algorithms (including 3D).

• Vector instructions provide a vector compare and select mechanism to implement conditional execution 
as the preferred way to control data flow in vector processing programs.

• Enhanced cache/memory interface.

1.1.1 64-Bit Vector Processing Technology and the 32-Bit Subset

The vector processing technology supports the following modes of PowerPC operations:

• 64-bit implementations/64-bit mode—The vector processing technology defines interactions with the 
PowerPC 64-bit registers.

• 64-bit implementations/32-bit mode—The vector processing technology defines interaction with the con-
ventions for 32-bit implementations of PowerPC registers.

For further details on the 64-bit PowerPC Architecture and the 32-bit subset, see Chapter 1, “Overview,” in 
the PowerPC Microprocessor Family: The Programming Environments Manual for 64-bit Microprocessors. 
This book describes the 64-bit PowerPC Architecture mode. Instructions are described from a 64-bit perspec-
tive and, in most cases, details of the 32-bit subset can easily be determined from the 64-bit descriptions. 
Significant differences in the 32-bit subset are highlighted and described separately as they occur. 

1.1.2 Levels of the Vector ISA

The Vector ISA follows the layering of PowerPC Architecture. The PowerPC Architecture has three levels 
defined as follows:

• PowerPC user instruction set architecture (UISA) —The UISA defines the level of the architecture to 
which user-level (referred to as problem state in the architecture specification) software should conform. 
The UISA defines the base user-level instruction set, user-level registers, data types, floating-point mem-
ory conventions and exception model as seen by user programs, and the memory and programming 
models. 

• PowerPC virtual environment architecture (VEA)—The VEA defines additional user-level functionality that 
falls outside typical user-level software requirements. The VEA describes the memory model for an envi-
ronment in which multiple devices can access memory, defines aspects of the cache model, defines 
cache control instructions, and defines the time base facility from a user-level perspective. 
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Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not necessarily 
adhere to the OEA. 

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level (referred to as 
privileged state in the architecture specification) resources typically required by an operating system. The 
OEA defines the PowerPC memory management model, supervisor-level registers, synchronization 
requirements, and the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. 

The vector processing technology defines instructions at the UISA and VEA levels.

1.1.3 Features Not Defined by the Vector ISA 

Because flexibility is an important design goal of the vector processing technology, there are many aspects of 
the microprocessor design, typically relating to the hardware implementation, that the Vector ISA does not 
define; for example, the number and the nature of execution units. The Vector ISA is a vector/SIMD architec-
ture, and as such makes it easier to implement pipelining instructions and parallel execution units to maxi-
mize instruction throughput. However, the Vector ISA does not define the internal hardware details of 
implementations. For example, one processor may use a simple implementation having two vector execution 
units whereas another may provide a bigger, faster microprocessor design with several concurrently pipe-
lined vector arithmetic logical units (ALUs) with separate load/store units (LSUs) and prefetch units. 

1.2 Vector Processing Architectural Model

This chapter provides overviews of aspects defined by the Vector ISA, following the same order as the rest of 
this book. The topics are as follows:

• Registers and programming model
• Operand conventions
• Instruction set and addressing modes
• Cache model, exceptions, and memory management

1.2.1 Vector Registers and Programming Model

In the vector processing technology, the ALU operates on from one to three source vectors and produces a 
single result/destination vector on each instruction. The ALU is a SIMD-style arithmetic unit that performs the 
same operation on all the data elements that comprise each vector. This scheme allows efficient code sched-
uling in a highly parallel processor. Load and store instructions are the only instructions that transfer data 
between registers and memory. The vector unit and vector register file are shown in Figure 1-2 on page 28. 
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The vector unit is a SIMD-style unit in which an instruction performs operations in parallel on the data 
elements that comprise each vector. Architecturally, the vector register file (VRF) is separate from the GPRs 
and FPRs. The vector programming model incorporates the 32 registers of the VRF; each register is 128 bits 
wide.

1.2.2 Operand Conventions

Operand conventions define how data is stored in vector registers and memory.

1.2.2.1 Byte Ordering

The default mapping for the Vector ISA is PowerPC big-endian. Big-endian byte ordering is shown in 
Figure 1-3 on page 29. 

Figure 1-2. Vector /SIMD Multimedia Extension Top-Level Diagram 
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As shown in Figure 1-3, the elements in vector registers are numbered using big-endian byte ordering. For 
example, the high-order (or most significant) byte element is numbered 0 and the low-order (or least signifi-
cant) byte element is numbered 15.

When defining high order and low order for elements in a vector register, be careful not to confuse its 
meaning based on the bit numbering. That is, in Figure 1-3 the high-order halfword for word 0 (bits [0–15]), 
would be halfword 0 (bits [0–7]), and the low-order halfword for word 0 would be halfword 1 (bits [8–15]).

In big-endian mode, a vector quadword load instruction for which the effective address (EA) is quadword 
aligned places the byte addressed by EA into byte element 0 of the target vector register. The byte addressed 
by EA + 1 is placed in byte element 1, and so forth. Similarly, a vector quadword store instruction for which 
the EA is quadword-aligned places byte element 0 of the source vector register into the byte addressed by 
EA. Byte element 1 is placed into the byte addressed by EA + 1, and so forth.

1.2.2.2 Floating-Point Conventions

The Vector ISA basically has two modes for floating-point; that is, a JavaTM/IEEE/C9X-compliant mode or a 
possibly faster non-Java/non-IEEE mode. The Vector ISA conforms to the Java Language Specification 1 
(hereafter referred to as Java), which is a subset of the default environment specified by the IEEE standard 
(ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic). For aspects of floating-
point behavior that are not defined by Java but are defined by the IEEE standard, the Vector ISA conforms to 
the IEEE standard. For aspects of floating-point behavior that are defined neither by Java nor by the IEEE 
standard but are defined by the C9X Floating-Point Proposal,WG14/N546 X3J11/96-010 (Draft 2/26/96) 
(hereafter referred to as C9X), the Vector ISA conforms to C9X when in Java-compliant mode.

Figure 1-3. Big-Endian Byte Ordering for a Vector Register 
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1.2.3 Vector Addressing Modes

As with PowerPC instructions, vector instructions are encoded as single-word (32-bit) instructions. Instruction 
formats are consistent among all instruction types, permitting decoding to be parallel with operand accesses. 
This fixed instruction length and consistent format simplifies instruction pipelining. Vector load, store, and 
stream prefetch instructions use secondary opcodes in primary opcode 31 (0b011111). Vector ALU-type 
instructions use primary opcode point 4 (0b000100).

Vector ISA supports both intraelement and interelement operations. In an intraelement operation, elements 
work in parallel on the corresponding elements from multiple source operand registers and place the results 
in the corresponding fields in the destination operand register. An example of an intraelement operation is the 
Vector Add Signed Word Saturate (vaddsws) instruction shown in Figure 1-4.

In this example, the four signed integer (32 bits) elements in register vA are added to the corresponding four 
signed integer (32 bits) elements in register vB, and the four results are placed in the corresponding elements 
in register vD.

In interelement operations, data paths cross over. That is, different elements from each source operand are 
used in the resulting destination operand. An example of an interelement operation is the Vector Permute 
(vperm) instruction shown in Figure 1-5.

In this example, vperm allows any byte in two source vector registers (vA and vB) to be copied to any byte in 
the destination vector register, vD. The bytes in a third source vector register (vC) specify from which byte in 
the first two source vector registers the corresponding target byte is to be copied. In this case, the elements 
from the source vector registers do not have corresponding elements that operate on the destination register.

Figure 1-4. Intraelement Example, vaddsws  

Figure 1-5. Interelement Example, vperm  
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Most arithmetic and logical instructions are intraelement operations. The data paths for the ALU run primarily 
north and south with little crossover. The crossover data paths have been restricted as much as possible to 
the interelement manipulation instructions (unpack, pack, permute, and so forth) with a vision toward imple-
menting the ALU and shift/permute networks as separate execution units. The following list of instructions 
distinguishes between interelement and intraelement instructions:

• Vector intraelement instructions

– Vector integer instructions
— Vector integer arithmetic instructions
— Vector integer compare instructions
— Vector integer rotate and shift instructions

– Vector floating-point instructions
— Vector floating-point arithmetic instructions
— Vector floating-point rounding and conversion instructions
— Vector floating-point compare instruction
— Vector floating-point estimate instructions

– Vector memory access instructions 

• Vector interelement instructions

– Vector alignment support instructions

– Vector permutation and formatting instructions
— Vector pack instructions
— Vector unpack instructions
— Vector merge instructions
— Vector splat instructions
— Vector permute instructions
— Vector shift left/right instructions

1.2.4 Vector Instruction Set

Although these categories are not defined by the Vector ISA, the vector instructions can be grouped as 
follows:

• Vector integer arithmetic instructions—These instructions are defined by the UISA. They include compu-
tational, logical, rotate, and shift instructions.

– Vector integer arithmetic instructions
– Vector integer compare instructions
– Vector integer logical instructions
– Vector integer rotate and shift instructions

• Vector floating-point arithmetic instructions—These include floating-point arithmetic instructions defined 
by the UISA.

– Vector floating-point arithmetic instructions
– Vector floating-point multiply/add instructions
– Vector floating-point rounding and conversion instructions
– Vector floating-point compare instruction
– Vector floating-point estimate instructions

• Vector load and store instructions—These include load and store instructions for vector registers defined 
by the UISA.
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• Vector permutation and formatting instructions—These instructions are defined by the UISA.

– Vector pack instructions
– Vector unpack instructions
– Vector merge instructions
– Vector splat instructions
– Vector permute instructions
– Vector select instructions
– Vector shift instructions

• Processor control instructions—These instructions are used to read and write from the Vector Status and 
Control Register (VSCR). These instructions are defined by the UISA.

• Memory control instructions—These instructions are used for managing of caches (user level and super-
visor level). The instructions are defined by VEA.

1.2.5 Vector Cache Model 

The Vector ISA defines several instructions for enhancements to cache management. These instructions 
allow software to indicate to the cache hardware how it should prefetch and prioritize writeback of data. The 
Vector ISA does not define hardware aspects of cache implementations.

1.2.6 Vector Exception Model

The vector unit never generates an exception. Data stream instructions never cause an exception them-
selves. Therefore, on any event that would cause an exception on a normal load or store, such as a page 
fault or protection violation, the data stream instruction does not take a DSI exception; instead, it is just 
canceled and is ignored. Most vector instructions do not generate any kind of exception.

The vector processing unit (VPU) does not report IEEE exceptions; there are no status flags and the unit has 
no architecturally visible traps. Default results are produced for all exception conditions as specified first by 
the Java specification. If no default exists, the IEEE standard’s default is used. Then, if no default exists, the 
C9X default is used. 

1.2.7 Memory Management Model 

In a PowerPC processor, the primary functions of the Memory Management Unit (MMU) are to translate 
logical (effective) addresses to physical addresses for memory accesses and I/O accesses (most I/O 
accesses are assumed to be memory-mapped) and to provide access protection on a block or page basis. 
Some protection is also available even if translation is disabled. The Vector ISA does not provide any addi-
tional instructions to the PowerPC memory management model, but the vector instructions have options to 
ensure that an operand is correctly placed in a vector register or in memory. 
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2. Vector Register Set

This chapter describes the register organization defined by the vector processing technology. It also 
describes how vector instructions affect some of the PowerPC registers. The vector instruction set architec-
ture (ISA) defines register-to-register operations for all computational instructions. Source data for these 
instructions is accessed from the on-chip vector registers (VRs) or are provided as immediate values 
embedded in the opcode. Architecturally, the VRs are separate from the general-purpose registers (GPRs) 
and the floating-point registers (FPRs). Data is transferred between memory and vector registers with explicit 
vector load and store instructions only.

Note:  The handling of reserved bits in any register is implementation-dependent. Software is permitted to 
write any value to a reserved bit in a register. However, a subsequent reading of the reserved bit returns ‘0’ if 
the value last written to the bit was ‘0’ and returns an undefined value (may be ‘0’ or ‘1’) otherwise. This 
means that even if the last value written to a reserved bit was ‘1’, reading that bit may return ‘0’.

2.1 Overview of the Vector and PowerPC Registers

Vector registers can be accessed by user-level and supervisor-level instructions as show in Figure 2-1 on 
page 34. The VRs are accessed as instruction operands. Access to the registers can be either implicit or 
explicit. The number to the right of the register name indicates the number that is used in the syntax of the 
instruction operands to access the register (for example, the number used to access the Fixed-Point Excep-
tion Register (XER) is special purpose register [SPR] 1). 

Note:  The PowerPC registers affected by vector instructions are shaded.
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Figure 2-1. Programming Model—All Registers 

1 These registers are 32-bit registers only.

SUPERVISOR MODEL - OEA

Time Base Facility 3
(For Reading)

TBL (32)

TBU (32)

TBR 268

TBR 269

USER MODEL
VEA

Configuration Registers
Machine State Register

MSR (64) PVR (32)

Processor Version Register1

Memory Management Registers

SDR1

SDR1 (64) SPR 25

Address Space Register 2

ASR (64) SPR 280

Exception Handling Registers
Data Address Register

DAR (64) SPR 19

SPRGs

SPRG0 (64/32)

SPRG1 (64/32)

SPRG2 (64/32)

SPRG3 (64/32)

SPR 272

SPR 273

SPR 274

SPR 275

DSISR1

DSISR (32) SPR 18

Save and Restore Registers

Floating-Point Exception

SRR0 (64/32)

FPECR

SRR1 (64/32)

SPR 26

SPR 27

SPR 1022

Cause Register (Optional)

Miscellaneous Registers

TBL (32)

Time Base Facility1

(For Writing)

TBU (32)

SPR 284

SPR 285

Decrementer1

Processor Identification
Register (Optional)

DEC (32)

PIR

SPR 22

SPR 1023

Data Address Breakpoint
Register (Optional)

DABR (64) SPR 1013

External Access Register
(Optional)1

EAR (32) SPR 282

2 These registers are on 64-bit implementations only.
3 In 64-bit implementations, TBR268 is read as a 64-bit value.

SPR 287

GPR0 (64)

GPR1 (64)

GPR31 (64)

General-Purpose
Registers

Floating-Point
Registers

FPR0 (64)

FPR1 (64)

FPR31 (64)

Condition Register1

Floating-Point 
Status and
Control Register1

FPSCR (32)

XER Register1

XER (64)

Link Register

LR (64)

SPR 1

Count Register

CTR (64)

SPR 8

SPR 9

Vector Save/

SPR 256

Vector Multimedia 

Vector Status and
Control Register

Restore Register

USER MODEL
UISA

CR (32)

VSCR (32)

VR0 (128)

VR1 (128)

VR31 (128)

VR2 (128)

VRSAVE (32)

Registers



Programming Environments Manual

  Vector/SIMD Multimedia Extension Technology

Version 2.07c
October 26, 2006  
 

Vector Register Set

Page 35 of 329

2.2 Registers Defined by Vector ISA

The user-level registers can be accessed by all software with either user or supervisor privileges. The user-
level register set for the vector processing technology incudes the following registers:

• Vector registers (VRs): the vector register file consists of 32 VRs (VR0-VR31). The VRs serve as vector 
source and vector destination registers for all vector instructions. See Section 2.2.1 Vector Register File 
for more details. 

• Vector Status and Control Register (VSCR): the VSCR contains the non-Java and saturation bit with the 
remaining bits being reserved. See Section 2.2.2 Vector Status and Control Register for more details.

• Vector Save/Restore Register (VRSAVE): the VRSAVE assists the application and operating system soft-
ware in saving and restoring the architectural state across context-switched events. See Section 2.2.3 
VRSAVE Register (VRSAVE) for more details. 

2.2.1 Vector Register File 

The vector register file (VRF), as shown in Figure 2-2, has 32 registers; each is 128 bits wide. Each vector 
register can hold sixteen 8-bit elements, eight 16-bit elements, or four 32-bit elements. 

The vector registers are accessed as vector instruction operands. Access to registers is explicit as part of the 
execution of an instruction.

Figure 2-2. Vector Register File (VSCR) 
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2.2.2 Vector Status and Control Register

The Vector Status and Control Register (VSCR) is a special 32-bit vector register (not an SPR) that is read 
and written in a manner similar to the Floating-Point Status and Control Register (FPSCR) in the PowerPC 
scalar floating-point unit. The VSCR is shown in Figure 2-3. 

The VSCR has two defined bits, the non-Java mode (NJ) bit (VSCR[15]) and the saturation (SAT) bit 
(VSCR[31]); the remaining bits are reserved.

Special instructions Move from Vector Status and Control Register (mfvscr) and Move to Vector Status and 
Control Register (mtvscr) are provided to move the VSCR from and to a vector register. When moved to or 
from a vector register, the 32-bit VSCR is right-aligned in the 128-bit vector register. When moved to a vector 
register, the upper 96 bits VRx[0–95] of the vector register are cleared, so that the VSCR in a vector register 
looks as shown in Figure 2-4.

Figure 2-3. Vector Status and Control Register (VSCR) 

Figure 2-4. VSCR Moved to a Vector Register 
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VSCR bit settings are shown in Table 2-1. 

The mtvscr is context synchronizing. This implies that all vector instructions logically preceding an mtvscr in 
the program flow will execute in the architectural context (NJ mode) that existed before completion of the 
mtvscr, and that all instructions logically following the mtvscr will execute in the new context (NJ mode) 
established by the mtvscr.

After an mfvscr instruction executes, the result in the target vector register will be architecturally precise. 
That is, it will reflect all updates to the SAT bit that could have been made by vector instructions logically 
preceding it in the program flow. Further, it will not reflect any SAT updates that may be made to it by vector 
instructions logically following it in the program flow. Reading the VSCR can be much slower than typical 
vector instructions. Therefore care must be taken in reading it to avoid performance problems.

Table 2-1. VSCR Field Descriptions  

Bits Name Description

0–14 —

Reserved. The handling of reserved bits is the same as the normal PowerPC implementation; that is, 
system registers such as XER and FPSCR are implementation-dependent. Software is permitted to write 
any value to such a bit. A subsequent reading of the bit returns ‘0’ if the value last written to the bit was ‘0’ 
and returns an undefined value (‘0’ or ‘1’) otherwise.

15 NJ

Non-Java. A mode control bit that determines whether vector floating-point operations will be performed 
in a Java-IEEE-C9X–compliant mode or a possibly faster non-Java/non-IEEE mode.
0 The Java-IEEE-C9X–compliant mode is selected. Denormalized values are handled as speci-

fied by Java, IEEE, and C9X standard.
1 The non-Java/non-IEEE–compliant mode is selected. If an element in a source vector register 

contains a denormalized value, the value ‘0’ is used instead. If an instruction causes an under-
flow exception, the corresponding element in the target VR is cleared to ‘0’. In both cases, the ‘0’ 
has the same sign as the denormalized or underflowing value.

This mode is described in detail in the floating–point overview Section 3.2.1 Floating-Point Modes.

16–30 —

Reserved. The handling of reserved bits is the same as the normal PowerPC implementation, that is, 
system registers such as XER and FPSCR are implementation-dependent. Software is permitted to write 
any value to such a bit. A subsequent reading of the bit returns ‘0’ if the value last written to the bit was ‘0’ 
and returns an undefined value (‘0’ or ‘1’) otherwise.

31 SAT

Saturation. A sticky status bit indicating that some field in a saturating instruction saturated since the last 
time SAT was cleared. In other words when SAT = ‘1’ it remains set to ‘1’ until it is cleared to ‘0’ by an 
mtvscr instruction. For further discussion, see Section 4.2.1.1 Saturation Detection.
1 The vector saturate instruction implicitly sets when saturation has occurred on the results one of 

the vector instructions having saturate in its name:
Move To VSCR (mtvscr)
Vector Add Integer with Saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs, 
vaddsws)
Vector Subtract Integer with Saturation (vsububs, vsubuhs, vsubuws, vsubsbs, vsubshs, 
vsubsws)
Vector Multiply-Add Integer with Saturation (vmhaddshs, vmhraddshs)
Vector Multiply-Sum with Saturation (vmsumuhs, vmsumshs, vsumsws)
Vector Sum-Across with Saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs, 
vsum4ubs)
Vector Pack with Saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss, vpkswss)
Vector Convert to Fixed-Point with Saturation (vctuxs, vctsxs)

0 Indicates no saturation occurred; mtvscr can explicitly clear this bit.
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2.2.3 VRSAVE Register (VRSAVE)

The VRSAVE register, shown in Figure 2-5, is a user-level, 32-bit SPR used to assist in application and oper-
ating system software in saving and restoring the architectural state across process context-switched events. 
VRSAVE is SPR256 and is entirely maintained and managed by software. 

VRSAVE bit settings are shown in Table 2-2. 

The VRSAVE register can be accessed only by the mfspr or mtspr instruction. 

Note:  An application binary interface (ABI) can use VRSAVE to indicate the usage of the vector registers. 
Any application use of VRSAVE must be in compliance with the ABI to ensure correct program operation. 

Figure 2-5. Saving/Restoring the Vector Context Register (VRSAVE) 
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2.3 Additions to the PowerPC UISA Registers

The PowerPC user instruction set architecture (UISA) registers can be accessed by either user or supervisor-
level instructions. The Condition Register (CR) is the only register affected by the vector processing architec-
ture. The CR is a 32-bit register, divided into eight 4-bit fields, CR0-CR7, that reflect the results of certain 
arithmetic operations and provide a mechanism for testing and branching. 

2.3.1 PowerPC Condition Register 

The PowerPC CR is a 32-bit register that reflects the result of certain operations and provides a mechanism 
for testing and branching. For the Vector ISA, the CR6 field can optionally be used. If a vector instruction 
field’s record bit (Rc) is set in a vector compare instruction, then the CR6 field is updated. The bits in the 
PowerPC CR are grouped into eight 4-bit fields, CR0–CR7, as shown in Figure 2-6.

For more details on the CR see Chapter 2, “PowerPC Register Set,” in the PowerPC Microprocessor Family: 
The Programming Environments Manual for 64-Bit Microprocessors.

To control program flow based on vector data, all vector compare instructions can optionally update CR6. If 
the instruction field’s record bit (Rc) is set in a vector compare instruction, the CR6 field is updated according 
to Table 2-3. 

The Rc bit should be used sparingly. In some implementations, instructions with Rc bit = ‘1’ could have a 
somewhat longer latency or be more disruptive to instruction pipeline flow than instructions with Rc bit = ‘0’. 
Therefore techniques of accumulating results and testing infrequently are advised.

Figure 2-6. Condition Register (CR) 
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2.4 Additions to the PowerPC OEA Registers

The PowerPC operating environment architecture (OEA) can be accessed only with supervisor-level instruc-
tions. Any attempt to access these SPRs with user-level instructions results in a supervisor-level exception. 
For more details on the Machine State Register (MSR) and the Machine Status Save/Restore Register 
(SRR), see Chapter 2, “PowerPC Register Set,” in the PowerPC Microprocessor Family: The Programming 
Environments Manual for 64-Bit Microprocessors.

2.4.1 VPU Bit in the PowerPC Machine State Register (MSR) 

A vector processing unit (VPU) available bit is added to the PowerPC Machine State Register (MSR[VEC]). 
The MSR is 64 bits wide as shown in Figure 2-7.

Vector data stream prefetching instructions will be suspended and resumed based on MSR[PR] and 
MSR[DR]. The Data Stream Touch (dst) and Data Stream Touch for Store (dstst) instructions are supported 
whenever MSR[DR] = ‘1’. If either instruction is executed when MSR[DR] = ‘0’ (real addressing mode), the 
results are boundedly undefined. For each existing data stream, prefetching is enabled if the MSR[DR] = ‘1’ 
and MSR[PR] bit has the value it had when the dst or dstst instruction that specified the data stream was 
executed. Otherwise prefetching for the data stream is suspended. In particular, the occurrence of an excep-
tion suspends all data stream prefetching. 

Note:  The Cell Broadband Engine processor treats the data stream instructions as no-ops.

Table 2-4 on page 41 shows the vector bit definitions for the MSR, as well as how the PR and DR bits are 
affected by the vector data stream instructions.
 

Figure 2-7. Machine State Register (MSR)  
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For more detailed information including the other bit settings for MSR, see Chapter 2, “PowerPC Register 
Set,” in the PowerPC Microprocessor Family: The Programming Environments Manual for 64-Bit Micropro-
cessors.

2.4.2 Machine Status Save/Restore Registers (SRR)

The Machine Status Save/Restore (SRR) Registers are part of the PowerPC OEA supervisor-level registers. 
The SRR0 and SRR1 registers are used to save machine status on exceptions and to restore machine status 
when an rfid instruction is executed. For more detailed information, see Chapter 2, “PowerPC Register Set,” 
in the PowerPC Microprocessor Family: The Programming Environments Manual for 64-Bit Microprocessors.

2.4.2.1 Machine Status Save/Restore Register 0 (SRR0)

The SRR0 is a 64-bit register used to save machine status on exceptions and restore machine status when 
an rfid instruction is executed. For the Vector ISA, it holds the effective address (EA) for the instruction that 
caused the VPU unavailable exception. The VPU unavailable exception occurs when no higher priority 
exception exists, and an attempt is made to execute a vector instruction when MSR[VEC] = ‘0’. The format of 
SRR0 is shown in Figure 2-8. 

Table 2-4. MSR Bit Settings Affected by the VPU  

Bits Name Description

38 VEC

VPU Available
0 When the bit is cleared to zero, the processor executes a “VPU Unavailable Exception” when any attempt 

is made to execute a vector instruction that accesses the VRF or the VSCR register.
1 The VRF and VSCR registers are accessible to vector instructions.
Note:  The VRSAVE register is not protected by MSR[VEC].

The data streaming family of instructions (dst, dstt, dstst, dststt, dss, and dssall) are not affected by the 
MSR[VEC]; that is, the VRF and VSCR registers are available to the data streaming instructions even when the 
MSR[VEC] is cleared. 

49 PR

Privilege level 
0 The processor can execute both user and supervisor-level instructions.
1 The processor can only execute user-level instructions.
Note:  Care should be taken if data-stream prefetching is used in a privileged state (MSR[PR] = ‘0’). For each exist-
ing data stream, prefetching is enabled if (a) MSR[DR] = ‘1’ and (b) MSR[PR] has the value it had when the dst or 
dstst instruction that specified the data stream was executed. Otherwise, prefetching for the data stream is sus-
pended.

59 DR

Data address translation   
0 Data address translation is disabled. If data stream touch (dst) and data stream touch for store (dstst) 

instructions are executed whenever DR = ‘0’, the results are boundedly undefined.
1 Data address translation is enabled. Data stream touch (dst) and data stream touch for store (dstst) 

instructions are supported whenever DR = ‘1’. 

Figure 2-8. Machine Status Save/Restore Register 0 (SRR0) 
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2.4.2.2 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 64-bit register used to save machine status on exceptions and to restore machine status when 
an rfid instruction is executed. The format of SRR1 is shown in Figure 2-9. 

When a VPU unavailable exception occurs, SRR1[33–36] and SRR1[42–47] are cleared to zero and bits 
MSR[0], MSR[48–55], MSR[57–59], and MSR[62–63] are placed into the corresponding bit positions of 
SRR1, reflecting the state of the MSR as it was just before the exception.  

Figure 2-9. Machine Status Save/Restore Register 1 (SRR1) 

SRR1

0 63
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3. Operand Conventions 

This section describes the operand conventions as they are represented in the vector processing technology 
at the user instruction set architecture (UISA) level. Detailed descriptions are provided of conventions used 
for transferring data between vector registers and memory, and for representing data in these vector regis-
ters. Additionally, the floating-point default conditions for exceptions are described.

3.1 Data Organization in Memory 

The vector instruction set architecture (ISA) follows the same data organization as the PowerPC Architecture 
UISA with a few extensions. In addition to supporting byte, halfword, and word operands, as defined in the 
PowerPC Architecture UISA, vector ISA supports quadword (128-bit) operands. 

The following sections describe the concepts of alignment and byte ordering of data for quadwords; other-
wise, alignment is the same as described in Chapter 3, “Operand Conventions,” in the PowerPC Micropro-
cessor Family: The Programming Environments Manual for 64-bit Microprocessors.

3.1.1 Aligned and Misaligned Accesses

Vectors are accessed from memory with instructions such as Load Vector Indexed (lvx) and Store Vector 
Indexed (stvx) instructions. The operand of a vector register to memory access instruction has a natural 
alignment boundary equal to the operand length. In other words, the natural address of an operand is an inte-
gral multiple of the operand length. A memory operand is said to be aligned if it is aligned at its natural 
boundary; otherwise it is misaligned. Vector instructions are 4 bytes long and word-aligned like PowerPC 
instructions.

Operands for vector register to memory access instructions have the characteristics shown in Table 3-1. 
 

The concept of alignment is also applied more generally to data in memory. For example, a data item is said 
to be halfword aligned if its address is a multiple of two. 

It is important to understand that vector memory operands are assumed to be aligned, and vector memory 
accesses are performed as if the appropriate number of low-order bits of the specified effective address were 
zero. This assumption is different from PowerPC integer and floating-point memory access instructions where 
alignment is not always assumed. Therefore, for the Vector ISA, the low-order bit of the effective address is 
ignored for halfword vector memory access instructions, and the low-order 4 bits of the effective address are 
ignored for quadword vector memory access instructions. The effect is to load or store the memory operand 
of the specified length that contains the byte addressed by the effective address.

Table 3-1. Memory Operand Alignment  

Operand Length 32-Bit Aligned Address (28-31) 64-Bit Aligned Address (60-63) 

Byte 8 bits (1 byte) xxxx xxxx

Halfword 2 bytes xxx0 xxx0

Word 4 bytes xx00 xx00

Quadword 16 bytes 0000 0000

Note:  An x in an address bit position indicates that the bit can be ‘0’ or ‘1’ independent of the state of other bits in the address.



Programming Environments Manual
 
Vector/SIMD Multimedia Extension Technology   

Operand Conventions

Page 44 of 329
Version 2.07c

October 26, 2006

If a memory operand is misaligned, additional instructions must be used to correctly place the operand in a 
vector register or in memory. The vector processing technology provides instructions to shift and merge the 
contents of two vector registers. These instructions facilitate copying misaligned quadword operands 
between memory and the vector registers.

3.1.2 Vector Processing Unit Byte Ordering 

For processors using the PowerPC and vector/SIMD architecture, the smallest addressable memory unit is 
the byte (8 bits), and scalars are composed of one or more sequential bytes. The Vector ISA supports big-
endian byte ordering.  

For scalars, the most-significant byte (MSB) is stored at the lowest (or starting) address, while the least-signif-
icant byte (LSB) is stored at the highest (or ending) address. This is called big endian because the big end of 
the scalar comes first in memory.

3.1.3 Vector Register and Memory Access Alignment

When loading an aligned byte, halfword, or word memory operand into a vector register, the element that 
receives the data is the element that would have received the data if the entire aligned quadword containing 
the memory operand addressed by the effective address had been loaded. Similarly, when an element in a 
vector register is stored into an aligned memory operand, the element selected to be stored is the element 
that would have been stored into the memory operand addressed by the effective address if the entire vector 
register had been stored to the aligned quadword containing the memory operand addressed by the effective 
address. (Byte memory operands are always aligned.) 

For aligned byte, halfword, and word memory operands, if the corresponding element number is known when 
the program is written, the appropriate vector splat and vector permute instructions can be used to copy or 
replicate the data contained in the memory operand after loading the operand into a vector register. A vector 
splat instruction will take the contents of an element in a vector register and replicate it into each element in 
the destination vector register. A vector permute instruction is the concatenation of the contents of two 
vectors. An example of this is given in detail in Section 3.1.4. Quadword Data Alignment. Another example is 
to replicate the element across an entire vector register before storing it into an arbitrary aligned memory 
operand of the same length; the replication ensures that the correct data is stored regardless of the offset of 
the memory operand in its aligned quadword in memory.

Because vector loads and stores are size-aligned, application binary interfaces (ABIs) should specify, and 
programmers should take care to align, data on quadword boundaries for maximum performance. 

3.1.4 Quadword Data Alignment

The vector instruction set does not provide for alignment exceptions for loading and storing data. When 
performing vector loads and stores, with the exception of the Load/Store Vector Left/Right Indexed instruc-
tions implemented in the Cell Broadband Engine processor, the effect is as if the low-order 4 bits of the 
address are 0b0000, regardless of the actual effective address generated. Because vectors can often be 
misaligned due to the nature of the algorithm, the vector instruction set provides support for postalignment of 
quadword loads and for prealignment of quadword stores.

Consider the following array, B, consisting of five word elements.

int B[5];
B[0] = 0x01234567;
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B[1] = 0x00112233;
B[2] = 0x44556677;
B[3] = 0x8899AABB;
B[4] = 0xCCDDEEFF;

Figure 3-1 illustrates the storage image of array B.

While this example shows the array starting at a quadword-aligned address, if the data of interest are 
elements one through four, accessing elements one through four of array B involves an unaligned quadword 
storage access that spans two aligned quadwords.

In the remainder of this section, the aligned quadword that contains the most-significant bytes of the 
unaligned quadword is called the most-significant quadword (MSQ) and the aligned quadword that contains 
the least-significant bytes of the unaligned quadword is called the least-significant quadword (LSQ). Because 
the Vector Storage Access instructions ignore the low-order bits of the effective address, the unaligned quad-
word cannot be transferred between storage and a vector register using a single instruction. The remainder of 
this section gives examples of accessing unaligned quadword storage operands. Similar sequences can be 
used to access unaligned byte and halfword storage operands.

3.1.4.1 Loading an Unaligned Quadword Using Vector Permute

Loading the contents of elements one through four of array B (see Figure 3-1) into VR[Vt] involves an 
unaligned quadword storage access. One approach that can be used to load an unaligned quadword into a 
vector register employs the Vector Permute instruction to extract the subject quadword from the two aligned 
quadwords that contain it. The following sequence of instructions copies the contents of an unaligned quad-
word in storage into VR[Vt].

Figure 3-1. Misaligned Vector 

# Assumptions MEM (B, 16): 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

MEM (B + 16, 16): CC DD EE FF

GPR (Ra): 00 00 00 00 80 00 00 00 (address of B[0])

GPR (Rb): 00 00 00 00 00 00 00 04 (index to B[1])

lvsl Vp, Ra, Rb VR (Vp): 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13

lvx Vhi, Ra, Rb VR (Vhi): 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

addi Rb, Rb, 16 GPR (Rb): 00 00 00 00 00 00 00 14

lvx Vlo, Ra, Rb VR (Vlo): CC DD EE FF

vperm Vt, Vhi, Vlo, Vp VR (Vt): 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Most-Significant Quadword (MSQ) Least-Significant Quadword (LSQ)

Contents 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

↑
MSB

↑
LSB
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After the two quadwords have been loaded into VR[Vhi] and VR[Vlo], using Load Vector Indexed instructions, 
where the address for loading VR[Vlo] is 16 greater than the address for loading VR[Vhi], the alignment is 
performed by shifting the 32-byte quantity VR[Vhi] || VR[Vlo] to the left by an amount determined by the 
address of the first byte of the required data. The shifting is done using a Vector Permute instruction for which 
the permute control vector is generated by a Load Vector for Shift Left instruction. The Load Vector for Shift 
Left instruction uses the same address specification as the Load Vector Indexed instruction that loads 
VR[Vhi]; this is the address of the required unaligned quadword.

Note:  The Load Vector for Shift Left instruction is used to generate the permute control vector for unaligned 
loads.

3.1.4.2 Storing an Unaligned Quadword Using Vector Permute

Storing the contents of VR[Vt] to elements one through four of array B (see Figure 3-1 Misaligned Vector on 
page 45) involves an unaligned quadword storage access. 

The procedure for storing an unaligned quadword is essentially the reverse of the procedure for loading an 
unaligned quadword. However, a read-modify-write sequence is required that inserts the source quadword 
into two aligned quadwords in storage. The quadword to be stored is assumed to be in VR[Vs]. The contents 
of VR[Vs] are shifted right and split into two parts, each of which is merged (using a Vector Select instruction) 
with the current contents of the two aligned quadwords (MSQ and LSQ). The MSQ will contain the most 
significant bytes, and the LSQ will contain the least significant bytes, of the unaligned quadword. The 
resulting two quadwords are stored using Store Vector Indexed instructions. A Load Vector for Shift Right 
instruction is used to generate the permute control vector that is used for the shifting. A single register is used 
for the shifted contents; this is possible because the shifting is done by means of a right rotation. The rotation 
is accomplished by specifying VR[Vs] for both components of the Vector Permute instruction. In addition, the 
same permute control vector is used on a sequence of ones and zeros to generate the mask used by the 
Vector Select instructions that do the merging.

The following sequence of instructions copies the contents of VR[Vs] into an unaligned quadword in storage.
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Note:  The Load Vector for Shift RIght instruction is used to generate the permute control vector for unaligned 
stores.

3.1.4.3 Loading an Unaligned Quadword Using Load Vector Left/Right

The Cell Broadband Engine processor provides a set of storage access instructions that more efficiently 
handles unaligned loads. These instructions are Load Vector Left Indexed (lvlx), Load Vector Left Indexed 
Last (lvlxl), Load Vector Right Indexed (lvrx), and Load Vector Right Indexed Last (lvrxl). The following 
sequence of instructions is used.

lvlx and lvrx are supported only on the Cell Broadband Engine processor and are not portable to other imple-
mentations of the vector/SIMD multimedia extension technology.

# Assumptions MEM (B, 16): 01 23 45 67

MEM (B + 16, 16):

GPR (Ra): 00 00 00 00 80 00 00 00 (address of B[0])

GPR (Rb): 00 00 00 00 00 00 00 04 (index to B[1])

VR (Vs): 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

lvsr Vp, Ra, Rb VR (Vp): 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B

lvx Vhi, Ra, Rb VR (Vhi): 01 23 45 67

addi Rb, Rb, 16 GPR (Rb): 00 00 00 00 00 00 00 14

lvx Vlo, Ra, Rb VR (Vlo):

vspltisb Vls, -1 VR (V1s): FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

vspltisb V0s, 0 VR (v0S): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

vperm Vmask, V0s, V1s, Vp VR (Vmask): FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

vperm Vs, Vs, Vs, Vp VR (Vs): CC DD EE FF 00 11 22 33 44 55 66 77 88 99 AA BB

vsel Vlo, Vs, Vlo, Vmask VR (Vlo): CC DD EE FF

vsel Vhi, Vhi, Vs, Vmask VR (Vhi) 00 11 22 33 44 55 66 77 88 99 AA BB

stvx Vlo, Ra, Rb MEM (B + 16, 16): CC DD EE FF

addi Rb, Rb, -16 GPR (Rb): 00 00 00 00 00 00 00 04

stvx Vhi, Ra, Rb MEM (B, 16): 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

# Assumptions MEM (B, 16): 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

MEM (B + 16, 16): CC DD EE FF

GPR (Ra): 00 00 00 00 80 00 00 00 (address of B[0])

GPR (Rb): 00 00 00 00 00 00 00 04 (index to B[1])

lvlx Vhi, Ra, Rb VR (Vhi): 00 11 22 33 44 55 66 77 88 99 AA BB 00 00 00 00

addi Rb, Rb, 16 GPR (Rb): 00 00 00 00 00 00 00 14

lvrx Vlo, Ra, Rb VR (Vlo): 00 00 00 00 00 00 00 00 00 00 00 00 CC DD EE FF

vor Vt, Vhi, Vlo VR (Vt): 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
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3.1.4.4 Storing an Unaligned Quadword Using Store Vector Left/Right Indexed

The Cell Broadband Engine processor provides a set of storage access instructions that more efficiently 
handles unaligned store. These instructions are Store Vector Left Indexed (stvlx), Store Vector Left Indexed 
Last (stvlxl), Store Vector Right Indexed (stvrx), and Store Vector Right Indexed Last (stvrxl). The following 
sequence of instructions is used.

Note:  stvlx and stvrx are supported only on the Cell Broadband Engine processor and are not portable to 
other implementations of the vector/SIMD multimedia extension technology.

3.1.4.5 Scalar Loads and Stores

No alignment is performed for scalar load or store instructions in the Vector ISA. If a vector load or store 
address is not properly size aligned, the suitable number of least significant bits are ignored, and a size 
aligned transfer occurs instead. Data alignment must be performed explicitly after being brought into the 
registers. No assistance is provided for aligning individual scalar elements that are not aligned on their natural 
boundary. The placement of scalar data in a vector element depends upon its address. That is, the placement 
of the addressed scalar is the same as if a load vector indexed instruction has been performed, except that 
only the addressed scalar is accessed (for cache-inhibited space); the values in the other vector elements are 
boundedly undefined. Also, data in the specified scalar is the same as if a store vector indexed instruction 
had been performed, except that only the scalar addressed is affected. No instructions are provided to assist 
in aligning individual scalar elements that are not aligned on their natural size boundary.

When a program knows the location of a scalar, it can perform the correct vector splats and vector permutes 
to move data to where it is required. For example, if a scalar is to be used as a source for a vector multiply 
(that is, each element multiplied by the same value), the scalar must be splatted into a vector register. Like-
wise, a scalar stored to an arbitrary memory location must be splatted into a vector register, and that register 
must be specified as the source of the store. This guarantees that the data appears in all possible positions of 
that scalar size for the store.

3.1.4.6 Misaligned Scalar Loads and Stores

Although no direct support of misaligned scalars is provided, the load-aligning sequence for the vectors 
described in Section 3.1.4.1 Loading an Unaligned Quadword Using Vector Permute on page 45 can be used 
to position the scalar to the left vector element, which can then be used as the source for a splat. That is, the 
address of a scalar is also the address of the left-most element of the quadword at that address. Similarly, the 
read-modify-write sequences, with the mask adjusted for the scalar size, can be used to store misaligned 
scalars. 

# Assumptions MEM (B, 16): 01 23 45 67

MEM (B + 16, 16):

GPR (Ra): 00 00 00 00 80 00 00 00 (address of B[0])

GPR (Rb): 00 00 00 00 00 00 00 04 (index to B[1])

VR (Vs): 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

stvlx Vs, Ra, Rb MEM (B, 16): 01 23 45 67 00 11 22 33 44 55 66 77 88 99 AA BB

addi Rb, Rb, 16 GPR (Rb): 00 00 00 00 00 00 00 14

stvrx Vs, Ra, Rb MEM (B + 16, 16) CC DD EE FF
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Note:  While these sequences work in cache-inhibited space, the physical accesses are not guaranteed to be 
atomic.

3.2 Vector Floating-Point Instructions—UISA

There are two kinds of floating-point instructions defined for the PowerPC and Vector ISA—computational 
and noncomputational. Computational instructions consist of those operations defined by the IEEE-754 stan-
dard for 32-bit arithmetic (those that perform addition, subtraction, multiplication, and division) and the 
multiply-add defined by the architecture. Noncomputational floating-point instructions consist of the floating-
point load and store instructions. Only the computational instructions are considered floating-point operations 
throughout this chapter. 

The single-precision format, value representations, and computational model defined in Chapter 3, “Operand 
Conventions,” in PowerPC Microprocessor Family: The Programming Environments Manual for 64-bit Micro-
processors apply to vector floating-point except as follows:

• In general, no status bits are set to reflect the results of floating-point operations. The only exception is 
that VSCR[SAT] can be set by the Vector Convert to Fixed-Point Word instructions.

• With the exception of the two Vector Convert to Fixed-Point Word (vctuxs, vctsxs) instructions and three 
of the four Vector Round to Floating-Point Integer (vrfiz, vrfip, vrfim) instructions, all vector floating-point 
instructions that round use the round-to-nearest rounding mode.

• Floating-point exceptions cannot cause the system error handler to be invoked.

If a function is required that is specified by the IEEE standard, is not supported by Vector ISA, and cannot be 
emulated satisfactorily using the functions that are supported by Vector ISA, the functions provided by the 
floating-point processor should be used; see Chapter 4, “Addressing Modes and Instruction Set Summary,” in 
PowerPC Microprocessor Family: The Programming Environments Manual for 64-bit Microprocessors.

3.2.1 Floating-Point Modes

Vector ISA supports two floating-point modes of operation—a Java mode and a non-Java mode of operation 
that is useful in circumstances where real-time performance is more important than strict Java and IEEE-
standard compliance.

When VSCR[NJ] is ‘0’ (default), operations are performed in Java mode. When VSCR[NJ] is ‘1’, operations 
are carried out in the non-Java mode. 

3.2.1.1 Java Mode

Java compliance requires compliance with only a subset of the Java/IEEE/C9X standard. The Java subset 
helps simplify floating-point implementations, as follows:

• Reducing the number of operations that must be supported

• Eliminating exception status flags and traps

• Producing results corresponding to all disabled exceptions, and thus eliminating enabling control flags

• Requiring only round-to-nearest rounding mode eliminates directed rounding modes and the associated 
rounding control flags
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Java compliance requires the following aspects of the IEEE standard:

• Supporting denorms as inputs and results (gradual underflow) for arithmetic operations

• Providing NaN results for invalid operations

• NaNs compare unordered with respect to everything, so that the result of any comparison of any NaN to 
any data type is always false

In some implementations, floating-point operations in Java mode may have a somewhat longer latency on 
normal operands and possibly much longer latency on denormalized operands than operations in non-Java 
mode. This means that in Java mode overall real-time response may be somewhat worse and deadline 
scheduling may be subject to much larger variance than non-Java mode.

3.2.1.2 Non-Java Mode

In the non-Java/non-IEEE/non-C9X mode (VSCR[NJ] = ‘1’), gradual underflow is not performed. Instead, any 
instruction that would have produced a denormalized result in Java mode substitutes a correctly signed zero 
(±0.0) as the final result. Also, denormalized input operands are flushed to the correctly signed zero (±0.0) 
before being used by the instruction.

The intent of this mode is to give programmers a way to assure optimum, data-insensitive, real-time response 
across implementations. Another way to improved response time would be to implement denormalized oper-
ations through software emulation. 

It is architecturally permitted, but strongly discouraged, for an implementation to implement only non-Java 
mode. In such an implementation, the VSCR[NJ] does not respond to attempts to clear it and is always read 
back as a ‘1’.

No other architecturally-visible, implementation-specific deviations from this specification are permitted in 
either mode.

3.2.2 Floating-Point Infinities

Valid operations on infinities are processed according to the IEEE standard.

3.2.3 Floating-Point Rounding

All vector floating-point arithmetic instructions use the IEEE default rounding mode, round-to-nearest. The 
IEEE directed rounding modes are not provided.

3.2.4 Floating-Point Exceptions

The following floating-point exceptions may occur during execution of vector floating-point instructions.

• NaN operand exception

• Invalid operation exception

• Zero divide exception

• Log of zero exception

• Overflow exception

• Underflow exception
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If an exception occurs, a result is placed into the corresponding target element as described in the following 
subsections. This result is the default result specified by Java, the IEEE standard, or C9X, as applicable. 
Recall that denormalized source values are treated as if they were zero when VSCR[NJ] =‘1’. The conse-
quences regarding exceptions are as follows:

• Exceptions that can be caused by a zero source value can be caused by a denormalized source value 
when VSCR[NJ] = ‘1’.

• Exceptions that can be caused by a nonzero source value cannot be caused by a denormalized source 
value when VSCR[NJ] = ‘1’.

3.2.4.1 NaN Operand Exception

If the exponent of a floating-point number is 255 and the fraction is nonzero, then the value is a Not a Number 
(NaN). If the most significant bit of the fraction field of a NaN is zero, then the value is a signaling NaN 
(SNaN); otherwise, it is a quiet NaN (QNaN). In all cases, the sign of a NaN is irrelevant.

A NaN operand exception occurs when a source value for any of the following instructions is a NaN:

• A vector instruction that would normally produce floating-point results

• Either of the two, Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs) or Vector Convert to 
Signed Fixed-Point Word Saturate (vctsxs) instructions

• Any of the four vector floating-point compare instructions

The following actions are taken:

1. If the vector instruction would normally produce floating-point results, the corresponding result is a source 
NaN selected as follows. In all cases, if the selected source NaN is an SNaN, it is converted to the corre-
sponding QNaN (by setting the high-order bit of the fraction field to ‘1’ before being placed into the target 
element).

if the element in register vA is a NaN
then the result is that NaN

else if the element in register vB is a NaN
then the result is that NaN
else if the element in register vC is a NaN

then the result is that NaN

2. If the instruction is either of the two Vector Convert to Fixed-Point Word instructions (vctuxs, vctsxs), the 
corresponding result is 0x0000_0000. VSCR[SAT] is not affected.

3. If the instruction is Vector Compare Bounds Floating-Point (vcmpbfp[.]), the corresponding result is 
0xC000_0000.

4. If the instruction is one of the other three Vector Floating-Point Compare instructions (vcmpeqfp[.], 
vcmpfgefp[.], vcmpbfp[.]), the corresponding result is 0x0000_0000.
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3.2.4.2 Invalid Operation Exception

An invalid operation exception occurs when a source value is invalid for the specified operation. The invalid 
operations are as follows:

• Magnitude subtraction of infinities

• Multiplication of infinity by zero

• Vector Reciprocal Square Root Estimate Float (vrsqrtefp) of a negative, nonzero number or -X

• Log base 2 estimate (vlogefp) of a negative, nonzero number or -X

The corresponding result is the QNaN 0x7FC0_0000. This is the single-precision format analogy of the 
double-precision format generated QNaN described in Chapter 3, “Operand Conventions,” in the PowerPC 
Microprocessor Family: The Programming Environments Manual for 64-bit Microprocessors.

3.2.4.3 Zero Divide Exception

A zero divide exception occurs when a Vector Reciprocal Estimate Floating-Point (vrefp) or Vector Recip-
rocal Square Root Estimate Floating-Point (vrsqrtefp) instruction is executed with a source value of zero.

The corresponding result is infinity, where the sign is the sign of the source value, as follows:

•

•

•

•

3.2.4.4 Log of Zero Exception

A log of zero exception occurs when a Vector Log Base 2 Estimate Floating-Point instruction (vlogefp) is 
executed with a source value of zero. The corresponding result is infinity. The exception cases are as follows:

• vlogefp    log2(±0.0) → -∞

• vlogefp    log2(-x) → QNaN, where x≠0

3.2.4.5 Overflow Exception

An overflow exception happens when either of the following conditions occur:

• For a vector instruction that would normally produce floating-point results, the magnitude of what would 
have been the result if the exponent range were unbounded exceeds that of the largest finite single-preci-
sion number.

• For either of the two Vector Convert To Fixed-Point Word instructions (vctuxs, vctsxs), either a source 
value is an infinity or the product of a source value and two unsigned immediate values (UIMMs) is a 
number too large to be represented in the target integer format.

1 +0.0⁄ +∞→

1 0.0–⁄ -∞→

1 +0.0( )⁄ +∞→

1 0.0–( )⁄ -∞→
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The following actions are taken:

1. If the vector instruction would normally produce floating-point results, the corresponding result is infinity, 
where the sign is the sign of the intermediate result.

2. If the instruction is Vector Convert to Unsigned Fixed-Point Word Saturate (vctuxs), the corresponding 
result is 0xFFFF_FFFF if the source value is a positive number or +X, and is 0x0000_0000 if the source 
value is a negative number or -X. VSCR[SAT] is set.

3. If the instruction is Vector Convert to Signed Fixed-Point Word Saturate (vcfsx), the corresponding result 
is 0x7FFF_FFFF if the source value is a positive number or +X, and is 0x8000_0000 if the source value is 
a negative number or -X. VSCR[SAT] is set.

3.2.4.6 Underflow Exception

Underflow exceptions occur only for vector instructions that would normally produce floating-point results. It is 
detected before rounding. It occurs when a nonzero intermediate result, computed as though both the preci-
sion and the exponent range were unbounded, is less in magnitude than the smallest normalized single-
precision number (2-126).

The following actions are taken:

1. If VSCR[NJ] = ‘0’, the corresponding result is the value produced by denormalizing and rounding the 
intermediate result.

2. If VSCR[NJ] = ‘1’, the corresponding result is a zero, where the sign is the sign of the intermediate result.

3.2.5 Floating-Point NaNs

The vector floating-point data format is compliant with the Java/IEEE/C9X single-precision format. A quantity 
in this format can represent a signed normalized number, a signed denormalized number, a signed zero, a 
signed infinity, a quiet Not a Number (QNaN), or a signaling NaN (SNaN). 

3.2.5.1 NaN Precedence

Whenever only one source operand of an instruction that returns a floating-point result is a NaN, then that 
NaN is selected as the input NaN to the instruction. When more than one source operand is a NaN, the 
precedence order for selecting the NaN is first from vA, then from vB, and then from vC. If the selected NaN 
is an SNaN, it is processed as described in Section 3.2.5.2. SNaN Arithmetic. If the selected NaN is a QNaN, 
it is processed according to Section 3.2.5.3. QNaN Arithmetic. 

3.2.5.2 SNaN Arithmetic

Whenever the input NaN to an instruction is an SNaN, a QNaN is delivered as the result, as specified by the 
IEEE standard when no trap occurs. The delivered QNaN is an exact copy of the original SNaN except that it 
is quieted; that is, the most-significant bit (msb) of the fraction is set to one (‘1’).

3.2.5.3 QNaN Arithmetic

Whenever the input NaN to an instruction is a QNaN, it is propagated as the result according to the IEEE 
standard. All information in the QNaN is preserved through all arithmetic operations.
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3.2.5.4 NaN Conversion to Integer

All NaNs convert to zero on conversions to integer instructions such as vctuxs and vctsxs.

3.2.5.5 NaN Production

Whenever the result of an vector operation originates a NaN (for example, an invalid operation), the NaN 
produced is a QNaN with the sign bit = ‘0’, exponent field = ‘255’, msb of the fraction field = ‘1’, and all other 
bits = ‘0’.
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4. Addressing Modes and Instruction Set Summary

This chapter describes instructions and addressing modes defined by the Vector Instruction Set Architecture 
(ISA) in accordance to the three levels of the PowerPC Architecture—user instruction set architecture (UISA), 
virtual environment architecture (VEA), and operating environment architecture (OEA). Vector instructions 
are primarily UISA, and if otherwise they are noted in the chapter. These instructions are divided into the 
following categories:

• Vector integer arithmetic instructions—These include arithmetic, logical, compare, rotate and shift instruc-
tions, and are described in Section 4.2.1 Vector Integer Instructions.

• Vector floating-point arithmetic instructions—These include floating-point arithmetic instructions, and are 
described in Section 4.2.2 Vector Floating-Point Instructions, which also discusses floating-point modes.

• Vector load and store instructions—These include load and store instructions for vector registers, and are 
described in Section 4.2.3 Vector Load and Store Instructions.

• Vector permutation and formatting instructions—These include pack, unpack, merge, splat, permute, 
select and shift instructions, and are described in Section 4.2.5 Vector Permutation and Formatting 
Instructions.

• Processor control instructions—These instructions are used to read and write from the Vector Status and 
Control Register, and are described in Section 4.2.6 Processor Control Instructions—UISA.

• Memory control instructions—These instructions are used to manage caches (user level and supervisor 
level), and are described in Section 4.3.1 Memory Control Instructions—VEA.

This grouping of instructions does not necessarily indicate the execution unit that processes a particular 
instruction or group of instructions within a processor implementation.

Vector integer instructions operate on byte, halfword, and word operands. Floating-point instructions operate 
on single-precision operands. The Vector ISA uses instructions that are 4 bytes long and word-aligned. It 
provides for byte, halfword, and word operand fetches and stores between memory and the vector registers 
(VRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in 
a computation and then modify the same or another memory location, the memory contents must be loaded 
into a register, modified, and then written to the target location using load and store instructions.
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4.1 Conventions

This section describes conventions used for the vector instruction set. Descriptions of memory addressing, 
synchronization, and the Vector Processing Unit (VPU) exception summary follow.

4.1.1 Execution Model

When used with the PowerPC instructions, vector instructions can be viewed by the programmer as new 
PowerPC instructions that are freely intermixed with existing ones to provide additional features in the instruc-
tion set. PowerPC processors appear to execute instructions in program order. Some vector implementations 
may not allow out-of-order execution and completion. Non-data-dependent vector instructions may issue and 
execute while previously issued instructions with a longer latency are still in the execution stage. Register 
renaming is useful for vector instructions to avoid stalling dispatch on false dependencies and to allow 
maximum register name reuse in heavily unrolled loops. The execution of a sequence of instructions will not 
be interrupted by exceptions because the unit does not report IEEE exceptions but rather produces the 
default results as specified in the Java/IEEE/C9X standards. The execution of a sequence of instructions can 
only be interrupted by a vector load or store instruction; otherwise, vector instructions do not generate any 
exceptions.

4.1.2 Computation Modes

The Vector ISA supports the following PowerPC Architecture types of implementations:

•  64-bit implementations, in that all general-purpose and floating-point registers, and some special-pur-
pose registers (SPRs) are 64 bits long, and effective addresses are 64 bits long. All 64-bit implementa-
tions have two modes of operation: the default 64-bit mode and the 32-bit mode. The mode controls how 
an effective address is interpreted, how condition bits are set, and how the Count Register (CTR) is 
tested by branch conditional instructions. 

The Machine State Register bit ‘0’, MSR[SF], is used to choose between 64-bit and 32-bit modes. When 
MSR[SF] = ‘0’, the processor runs in 32-bit mode; when MSR[SF] = ‘1’, the processor runs in the default 
64-bit mode.

•  32-bit implementations, in that all registers except floating-point registers (FPRs) are 32 bits long, and 
effective addresses are 32 bits long.

Instructions defined in this chapter are provided for 64-bit implementations unless otherwise stated.

4.1.3 Classes of Instructions

Vector instructions follow the illegal instruction class defined by the PowerPC Architecture in the section 
“Classes of Instructions” in Chapter 4, “Addressing Modes and Instruction Set Summary,” of the PowerPC 
Microprocessor Family: The Programming Environments Manual for 64-Bit Microprocessors. For the Vector 
ISA, all unspecified encodings within the major opcode (04) that are not defined are illegal PowerPC instruc-
tions. The only exclusion in defining an unspecified encoding is an unused bit in an immediate field or speci-
fier field (///).
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4.1.4 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it 
executes a load, store, or cache instruction, and when it fetches the next sequential instruction.

4.1.4.1 Memory Operands

Bytes in memory are numbered consecutively starting with zero. Each number is the address of the corre-
sponding byte.

Memory operands can be bytes, halfwords, words, or quadwords for vector instructions. The address of a 
memory operand is the address of its first byte (that is, of its lowest-numbered byte). Operand length is 
implicit for each instruction. The Vector ISA supports big-endian byte ordering; see Section 3.1.2 Vector 
Processing Unit Byte Ordering for more information.

The natural alignment boundary of an operand of a single-register memory access instruction is equal to the 
operand length. In other words, the natural address of an operand is an integral multiple of the operand 
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise, it is 
misaligned. For a detailed discussion about memory operands, see Section 3.1 Data Organization in 
Memory.

4.1.4.2 Effective Address Calculation

An effective address (EA) is the 64-bit or 32-bit sum computed by the processor when executing a memory 
access or when fetching the next sequential instruction. For a memory access instruction, if the sum of the EA 
and the operand length exceeds the maximum EA, the memory operand is considered to wrap around from 
the maximum EA through EA 0, as described in the Chapter 4, “Addressing Modes and Instruction Set 
Summary,” in PowerPC Microprocessor Family: The Programming Environments Manual for 64-Bit Micropro-
cessors.

A zero in the rA field indicates the absence of the corresponding address component. For the absent compo-
nent, a value of zero is used for the address. This is shown in the instruction description as (rA|0).

In all implementations (including 32-bit mode in 64-bit implementations), the doublewords of a quadword can 
be swapped.

Vector load and store operations use register indirect with index mode and boundary align to generate effec-
tive addresses. For further details see Section 4.2.3.2 Vector Load and Store Address Generation.
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4.2 Vector UISA Instructions

Vector instructions can provide additional supporting instructions to the PowerPC Architecture. This section 
discusses the instructions defined in the vector UISA.

4.2.1 Vector Integer Instructions

The following are categories for vector integer instructions:

• Arithmetic 
• Compare 
• Logical 
• Rotate and shift 

Integer instructions use the content of the VRs as source operands and place results into VRs as well. Setting 
the Rc bit of a vector compare instruction causes the PowerPC Condition Register (CR) to be updated.

The vector integer instructions treat source operands as signed integers unless the instruction is explicitly 
identified as performing an unsigned operation. For example, Vector Add Unsigned Word Modulo 
(vadduwm) and Vector Multiply Odd Unsigned Byte (vmuloub) instructions interpret both operands as 
unsigned integers.

4.2.1.1 Saturation Detection

Most integer instructions have both signed and unsigned versions and many have both modulo (wrap-
around) and saturating clamping modes. Saturation occurs whenever the result of a saturating instruction 
does not fit in the result field. Unsigned saturation clamps results to zero on underflow and to the maximum 
positive integer value (2n-1, for example, 255 for byte fields) on overflow. Signed saturation clamps results to 
the smallest representable negative number (-2n-1, for example, -128 for byte fields) on underflow, and to the 
largest representable positive number (2n-1-1, for example, +127 for byte fields) on overflow. When a modulo 
instruction is used, the resultant number truncates overflow or underflow for the length (byte, halfword, word, 
quadword) and type of operand (unsigned, signed). The Vector ISA provides a way to detect saturation and 
sets the [SAT] bit in the Vector Status and Control Register (VSCR[SAT]) in a saturating instruction. 

Borderline cases that generate results equal to saturation values, for example unsigned 0+0 → 0 and 
unsigned byte 1+254 → 255, are not considered saturation conditions and do not cause VSCR[SAT] to be 
set.

The VSCR[SAT] can be set by the following types of integer, floating-point, and formatting instructions: 

• Move to VSCR (mtvscr)

• Vector add integer with saturation (vaddubs, vadduhs, vadduws, vaddsbs, vaddshs, vaddsws)

• Vector subtract integer with saturation (vsububs, vsubuhs, vsubuws, vsubsbs, vsubshs, vsubsws)

• Vector multiply-add integer with saturation (vmhaddshs, vmhraddshs)

• Vector multiply-sum with saturation (vmsumuhs, vmsumshs, vsumsws)

• Vector sum-across with saturation (vsumsws, vsum2sws, vsum4sbs, vsum4shs, vsum4ubs)

• Vector pack with saturation (vpkuhus, vpkuwus, vpkshus, vpkswus, vpkshss, vpkswss)

• Vector convert to fixed-point with saturation (vctuxs, vctsxs) 
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Note:  Only instructions that explicitly call for saturation can set VSCR[SAT]. Modulo integer instructions and 
floating-point arithmetic instructions never set VSCR[SAT]. For further details see Section 2.2.2 Vector Status 
and Control Register.

4.2.1.2 Vector Integer Arithmetic Instructions

Table 4-1 describes the integer arithmetic instructions for the PowerPC processors. 

Table 4-1. Vector Integer Arithmetic Instructions (Page 1 of 6) 

Name Mnemonic Syntax Operation

Vector Add Signed 
Integer Saturate

vaddsbs

vaddshs

vaddsws

vD,vA,vB

Let n = element length.
• For vaddsbs, element length = 8 bits (1 byte).
• For vaddshs, element length = 16 bits (1 halfword).
• For vaddsws, element length = 32 bits (1 word).

Each n-bit signed integer element in register vA is added to the correspond-
ing n-bit signed integer element in register vB. If the intermediate result is 
greater than 2n-1-1, it saturates to 2n-1-1. If the intermediate result is less 
than -2n-1, it saturates to -2n-1. If saturation occurs, the SAT bit is set. The 
signed integer result is placed into the corresponding n-bit element of register 
vD.

Vector Add 
Unsigned Integer 
Modulo

vaddubm

vadduhm

vadduwm

vD,vA,vB

Let n = element length.
• For vaddubm, element length = 8 bits (1 byte).
• For vadduhm, element length = 16 bits (1 halfword).
• For vadduwm, element length = 32 bits (1 word).

Each n-bit unsigned integer element in register vA is added to the corre-
sponding n-bit unsigned integer element in register vB. The unsigned integer 
result is placed into the corresponding n-bit element of register vD.

Note that these instructions can be used for unsigned or signed integers.

Vector Add 
Unsigned Integer 
Saturate

vaddubs

vadduhs

vadduws

vD,vA,vB

Let n = element length.
• For vaddubs, element length = 8 bits (1 byte).
• For vadduhs, element length = 16 bits (1 halfword).
• For vadduws, element length = 32 bits (1 word).

Each n-bit unsigned integer element in register vA is added to the corre-
sponding n-bit unsigned integer element in register vB. If the intermediate 
result is greater than 2n-1, it saturates to 2n-1. If saturation occurs, the SAT 
bit is set. The unsigned integer result is placed into the corresponding n-bit 
element of register vD.

Vector Add and 
Write Carry-out 
Unsigned Word

vaddcuw vD,vA,vB

Each unsigned-integer word element in register vA is added to the corre-
sponding unsigned-integer word element in register vB. The carry out of bit 0 
of the 32-bit sum is zero-extended to 32 bits and placed into the correspond-
ing word element of register vD.

Vector Subtract 
Signed Integer 
Saturate

vsubsbs

vsubshs

vsubsws

vD,vA,vB

Let n = element length.
• For vsubsbs, element length = 8 bits (1 byte).
• For vsubshs, element length = 16 bits (1 halfword).
• For vsubsws, element length = 32 bits (1 word).

Each n-bit signed-integer element in register vB is subtracted from the corre-
sponding n-bit signed-integer element in register vA. If the intermediate result 
is greater than 2n-1-1, it saturates to 2n-1-1. If the intermediate result is less 
than -2n-1, it saturates to -2n-1. If saturation occurs, the SAT bit is set. The 
signed-integer result is placed into the corresponding n-bit element in register 
vD.
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Vector Subtract 
Unsigned Integer 
Modulo

vsububm

vsubuhm

vsubuwm

vD,vA,vB

Let n = element length.
• For vsububm, element length = 8 bits (1 byte).
• For vsubuhm, element length = 16 bits (1 halfword).
• For vsubuwm, element length = 32 bits (1 word).

Each n-bit integer element in register vB is subtracted from the corresponding 
n-bit integer element in register vA. The integer result is placed into the corre-
sponding n-bit element in register vD.

Note that these instructions can be used for unsigned or signed integers.

Vector Subtract 
Unsigned Integer 
Saturate

vsububs

vsubuhs

vsubuws

vD,vA,vB

Let n = element length.
• For vsububs, element length = 8 bits (1 byte).
• For vsubuhs, element length = 16 bits (1 halfword).
• For vsubuws, element length = 32 bits (1 word).

Each unsigned-integer element in register vB is subtracted from the corre-
sponding unsigned-integer element in register vA. If the intermediate result is 
less than ‘0’, it saturates to ‘0’. If saturation occurs, the SAT bit is set. The 
unsigned-integer result is placed into the corresponding element in register 
vD.

Vector Subtract 
and Write Carry-
out Unsigned 
Word

vsubcuw vD,vA,vB

Each unsigned-integer word element in register vB is subtracted from the cor-
responding unsigned-integer word element in register vA. The complement of 
the borrow out of bit 0 of the 32-bit difference is zero-extended to 32 bits and 
placed into the corresponding word element of register vD.

Vector Multiply 
Odd Unsigned 
Integer

vmuloub

vmulouh
vD,vA,vB

Let n = element length.
• For vmuloub, element length = 8 bits (1 byte), and
• For vmulouh, element length = 16 bits (1 halfword), and

Each odd-numbered n-bit unsigned-integer element in register vA is multi-
plied by the corresponding odd-numbered n-bit unsigned-integer element in 
register vB. The (2×n)-bit unsigned-integer products are placed, in the same 
order, into register vD.

Vector Multiply 
Odd Signed 
Integer Modulo

vmulosb

vmulosh
vD,vA,vB

Let n = element length.
• For vmulosb, element length = 8 bits (1 byte), and
• For vmulosh, element length = 16 bits (1 halfword), and

Each odd-numbered n-bit signed-integer element in register vA is multiplied 
by the corresponding odd-numbered n-bit signed-integer element in register 
vB. The (2×n)-bit signed-integer products are placed, in the same order, into 
register vD.

Vector Multiply 
Even Unsigned 
Integer Modulo

vmuleub

vmuleuh
vD,vA,vB

Let n = element length.
• For vmuleub, element length = 8 bits (1 byte), and
• For vmuleuh, element length = 16 bits (1 halfword), and

Each even-numbered n-bit unsigned-integer element in register vA is multi-
plied by the corresponding even-numbered n-bit unsigned-integer element in 
register vB. The (2×n)-bit unsigned-integer products are placed, in the same 
order, into register vD.

Vector Multiply 
Even Signed
Integer Modulo

vmulesb

vmulesh
vD,vA,vB

Let n = element length.
• For vmulesb, element length = 8 bits (1 byte), and
• For vmulesh, element length = 16 bits (1 halfword), and

Each even-numbered n-bit signed-integer element in register vA is multiplied 
by the corresponding even-numbered n-bit signed-integer element in register 
vB. The (2×n)-bit signed-integer products are placed, in the same order, into 
register vD.

Table 4-1. Vector Integer Arithmetic Instructions (Page 2 of 6) 

Name Mnemonic Syntax Operation
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Vector Multiply-
High and Add 
Signed Halfword 
Saturate

vmhaddshs vD,vA,vB, vC

Each signed-integer halfword element in register vA is multiplied by the corre-
sponding signed-integer halfword element in register vB, producing a 32-bit 
signed-integer product. The corresponding signed-integer halfword element 
in register vC is sign-extended to 17 bits and added to bits 0:16 of the prod-
uct. If the intermediate result is greater than 215-1, it saturates to 215-1. If the 
intermediate result is less than -215, it saturates to -215. If saturation occurs, 
the SAT bit is set. The signed-integer result is placed into the corresponding 
halfword element of register vD.

Vector Multiply-
High Round and 
Add Signed 
Halfword Saturate

vmhraddshs vD,vA,vB,vC

Each signed-integer halfword element in register vA is multiplied by the corre-
sponding signed-integer halfword element in register vB, producing a 32-bit 
signed-integer product. The product is rounded by adding the value 
0x0000_4000. The corresponding signed-integer halfword element in register 
vC is sign-extended to 17 bits and added to bits 0:16 of the rounded product. 
If the intermediate result is greater than 215-1, it saturates to 215-1. If the 
intermediate result is less than -215, it saturates to -215. If saturation occurs, 
the SAT bit is set. The signed-integer result is placed into the corresponding 
halfword element of register vD.

Vector Multiply-
Low and Add 
Unsigned 
Halfword Modulo

vmladduhm vD,vA,vB,vC

Each integer halfword element in register vA is multiplied by the correspond-
ing integer halfword element in register vB, producing a 32-bit integer prod-
uct. The product is added to the corresponding integer halfword element in 
register vC. The integer result is placed into the corresponding halfword ele-
ment of register vD.

Note that vmladduhm can be used for unsigned or signed integers.

Vector Multiply-
Sum Unsigned 
Integer Byte 
Modulo

vmsumubm vD,vA,vB,vC

For each word element in register vC, the following operations are performed 
in the order shown:

• Each of the four unsigned-integer byte elements contained in the corre-
sponding word element of register vA is multiplied by the corresponding 
unsigned-integer byte element in register vB, producing an unsigned-
integer 16-bit product.

• The unsigned-integer modulo sum of these four products is added to the 
unsigned-integer word element in register vC.

• The unsigned-integer result is placed into the corresponding word ele-
ment of register vD.

Vector Multiply-
Sum Unsigned 
Integer Halfword 
Modulo

vmsumuhm vD,vA,vB,vC

For each word element in register vC, the following operations are performed 
in the order shown:

• Each of the two unsigned-integer halfword elements contained in the 
corresponding word element of register vA is multiplied by the corre-
sponding unsigned-integer halfword element in register vB, producing 
an unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is added to the 
unsigned-integer word element in register vC.

• The unsigned-integer result is placed into the corresponding word ele-
ment of register vD.

Table 4-1. Vector Integer Arithmetic Instructions (Page 3 of 6) 

Name Mnemonic Syntax Operation
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Vector Multiply-
Sum Signed Half-
Word Saturate

vmsumshs vD,vA,vB,vC

For each word element in register vC, the following operations are performed 
in the order shown:

• Each of the two signed-integer halfword elements in the corresponding 
word element of register vA is multiplied by the corresponding signed-
integer halfword element in register vB, producing a signed-integer 
32-bit product.

• The signed-integer sum of these two products is added to the signed-
integer word element in register vC.

• If the intermediate result is greater than 231-1, it saturates to 231-1. If the 
intermediate result is less than -231, it saturates to -231. If saturation 
occurs, the SAT bit is set.

• The signed-integer result is placed into the corresponding word element 
of register vD.

Vector Multiply-
Sum Unsigned 
Halfword Saturate

vmsumuhs vD,vA,vB,vC

For each word element in register vC, the following operations are performed 
in the order shown:

• Each of the two unsigned-integer halfword elements contained in the 
corresponding word element of register vA is multiplied by the corre-
sponding unsigned-integer halfword element in register vB, producing 
an unsigned-integer 32-bit product.

• The sum of the two 32-bit unsigned-integer products is added to the 
unsigned-integer word element in register vC.

• If the intermediate result is greater than 232, it saturates to 232. If the 
intermediate result is less than ‘0’, it saturates to ‘0’. If saturation occurs, 
the SAT bit is set.

• The unsigned-integer result is placed into the corresponding word ele-
ment of register vD.

Vector Multiply-
Sum Mixed Byte 
Modulo

vmsummbm vD,vA,vB,vC

For each word element in register vC, the following operations are performed 
in the order shown:

• Each of the four signed-integer byte elements contained in the corre-
sponding word element of register vA is multiplied by the corresponding 
unsigned-integer byte element in register vB, producing a signed-integer 
16-bit product.

• The signed-integer modulo sum of these four products is added to the 
signed-integer word element in register vC.

• The signed-integer result is placed into the corresponding word element 
of register vD.

Vector Multiply-
Sum Signed 
Halfword Modulo

vmsumshm vD,vA,vB,vC

For each word element in register vC, the following operations are performed 
in the order shown:

• Each of the two signed-integer halfword elements contained in the cor-
responding word element of register vA is multiplied by the correspond-
ing signed-integer halfword element in register vB, producing a signed-
integer 32-bit product.

• The signed-integer modulo sum of these two products is added to the 
signed-integer word element in register vC.

• The signed-integer result is placed into the corresponding word element 
of register vD.

Vector Sum 
Across Signed 
Word Saturate

vsumsws vD,vA,vB

The signed-integer sum of the four signed-integer word elements in register 
vA is added to the signed-integer word element in bits [96-127] of register vB.

If the intermediate result is greater than 231-1, it saturates to 231-1. If the 
intermediate result is less than -231, it saturates to -231. If saturation occurs, 
the SAT bit is set.

The signed-integer result is placed into bits [96-127] of register vD. Bits [0-95] 
of register vD are set to ‘0’.

Table 4-1. Vector Integer Arithmetic Instructions (Page 4 of 6) 

Name Mnemonic Syntax Operation
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Vector Sum 
Across Partial 
(1/2) Signed 

Word Saturate

vsum2sws vD,vA,vB

The signed-integer sum of the first two signed-integer word elements in regis-
ter vA is added to the signed-integer word element in bits [32-63] of register 
vB. If the intermediate result is greater than 231-1, it saturates to 231-1. If the 
intermediate result is less than -231, it saturates to -231. If saturation occurs, 
the SAT bit is set. The signed-integer result is placed into bits [32-63] of regis-
ter vD.

The signed-integer sum of the last two signed-integer word elements in regis-
ter vA is added to the signed-integer word element in bits [96-127] of register 
vB. If the intermediate result is greater than 231-1, it saturates to 231-1. If the 
intermediate result is less than -231, it saturates to -231. If saturation occurs, 
the SAT bit is set. The signed-integer result is placed into bits [96-127] of reg-
ister vD. Bits[0-31] and bits [64-95] of register vD are set to ‘0’.

Vector Sum 
Across Partial 
(1/4) Unsigned 
Integer Byte 
Saturate

vsum4ubs vD,vA,vB

For each word element in register vB, the following operations are performed 
in the order shown:

• The unsigned-integer sum of the four unsigned-integer byte elements 
contained in the corresponding word element of register vA is added to 
the unsigned-integer word element in register vB.

• If the intermediate result is greater than 232-1, it saturates to 232-1. If 
saturation occurs, the SAT bit is set.

• The unsigned-integer result is placed into the corresponding word ele-
ment of register vD.

Vector Sum 
Across Partial 
(1/4) Signed 
Integer Byte 
Saturate

vsum4sbs vD,vA,vB

For each word element in register vB, the following operations are performed 
in the order shown:

• The signed-integer sum of the four signed-integer byte elements con-
tained in the corresponding word element of register vA is added to the 
signed-integer word element in register vB.

• If the intermediate result is greater than 231-1, it saturates to 231-1. If 
the intermediate result is less than -231, it saturates to -231. If saturation 
occurs, the SAT bit is set.

• The signed-integer result is placed into the corresponding word element 
of register vD.

Vector Sum 
Across Partial 
(1/4) Signed 
Integer Halfword 
Saturate

vsum4shs vD,vA,vB

For each word element in register vB, the following operations are performed, 
in the order shown:

• The signed-integer sum of the two signed-integer halfword elements 
contained in the corresponding word element of register vA is added to 
the signed-integer word element in register vB.

• If the intermediate result is greater than 231-1, it saturates to 231-1. If 
the intermediate result is less than -231, it saturates to -231. If saturation 
occurs, the SAT bit is set.

• The signed-integer result is placed into the corresponding word element 
of register vD.

Vector Average 
Unsigned Integer

vavgub

vavguh

vavguw

vD,vA,vB

Let n = element length. Each n-bit unsigned-integer element in register vA is 
added to the corresponding n-bit unsigned-integer element in register vB, 
producing an (n+1)-bit unsigned-integer sum. The sum is incremented by ‘1’. 
The high-order n bits of the result are placed into the corresponding n-bit ele-
ment in register vD.

For vavgub, element length = 8 bits (1 byte).

For vavguh, element length = 16 bits (1 halfword).

For vavguw, element length = 32 bits (1 word).

Table 4-1. Vector Integer Arithmetic Instructions (Page 5 of 6) 

Name Mnemonic Syntax Operation
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4.2.1.3 Vector Integer Compare Instructions

The vector integer compare instructions algebraically or logically compare the contents of the elements in 
vector register vA with the contents of the elements in vB. Each compare result vector consists of TRUE 
(0xFF, 0xFFFF, 0xFFFFFFFF) or FALSE (0x00, 0x0000, 0x00000000) elements of the size specified by the 
compare source operand element (byte, halfword, or word). The result vector can be directed to any vector 
register and can be manipulated with any of the instructions as normal data (for example, combining condition 
results).

Vector compares provide equal-to and greater-than predicates. Others are synthesized from these by logi-
cally combining or inverting result vectors.

Vector Average 
Signed Integer

vavgsb

vavgsh

vavgsw

vD,vA,vB

Let n = element length. Each n-bit signed-integer element in register vA is 
added to the corresponding n-bit signed-integer element in register vB, pro-
ducing an (n+1)-bit signed-integer sum. The sum is incremented by ‘1’. The 
high-order n bits of the result are placed into the corresponding n-bit element 
in register vD.

For vavgsb, element length = 8 bits (1 byte).

For vavgsh, element length = 16 bits (1 halfword).

For vavgsw, element length = 32 bits (1 word).

Vector Maximum 
Unsigned Integer

vmaxub

vmaxuh

vmaxuw

vD,vA,vB

Let n = element length. Each n-bit unsigned-integer element in register vA is 
compared to the corresponding n-bit unsigned-integer element in register vB. 
The larger of the two unsigned-integer values is placed into the correspond-
ing n-bit element in register vD.

For vmaxub, element length = 8 bits (1 byte).

For vmaxuh, element length = 16 bits (1 halfword).

For vmaxuw, element length = 32 bits (1 word).

Vector Maximum 
Signed Integer

vmaxsb

vmaxsh

vmaxsw

vD,vA,vB

Let n = element length. Each n-bit signed-integer element in register vA is 
compared to the corresponding n-bit signed-integer element in register vB. 
The larger of the two signed-integer values is placed into the corresponding 
n-bit element in register vD.

For vmaxsb, element length = 8 bits (1 byte).

For vmaxsh, element length = 16 bits (1 halfword).

For vmaxsw, element length = 32 bits (1 word).

Vector Minimum 
Unsigned Integer

vminub

vminuh

vminuw

vD,vA,vB

Let n = element length. Each n-bit unsigned-integer element in register vA is 
compared to the corresponding n-bit unsigned-integer element in register vB. 
The smaller of the two unsigned-integer values is placed into the correspond-
ing n-bit element in register vD.

For vminub, element length = 8 bits (1 byte).

For vminuh, element length = 16 bits (1 halfword).

For vminuw, element length = 32 bits (1 word).

Vector Minimum 
Signed Integer

vminsb

vminsh

vminsw

vD,vA,vB

Let n = element length. Each n-bit signed-integer element in register vA is 
compared to the corresponding n-bit signed-integer element in register vB. 
The smaller of the two signed-integer values is placed into the corresponding 
n-bit element in register vD.

For vminsb, element length = 8 bits (1 byte).

For vminsh, element length = 16 bits (1 halfword).

For vminsw, element length = 32 bits (1 word).

Table 4-1. Vector Integer Arithmetic Instructions (Page 6 of 6) 

Name Mnemonic Syntax Operation
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If the record bit (Rc) is set in the integer compare instructions (shown in Table 4-2) it can optionally set the 
CR6 field of the PowerPC Condition Register. If Rc = ‘1’ in the vector integer compare instruction, then CR6 is 
set to reflect the result of the comparison, as follows in Table 4-2. 

Table 4-3 describes the vector integer compare instructions. 

Table 4-2. CR6 Field Bit Settings for Vector Integer Compare Instructions  

CR Bit CR6 Bit Vector Compare 

24 0 1 Relation is true for all element pairs (that is, vD is set to all ones)

25 1 0

26 2 1 Relation is false for all element pairs (that is, register vD is cleared)

27 3 0

Table 4-3. Vector Integer Compare Instructions  

Name Mnemonic Syntax Operation

Vector Compare
Greater than Unsigned 
Integer

vcmpgtub[.]

vcmpgtuh[.]

vcmpgtuw[.]

vD,vA,vB

Let n = element length.
• For vcmpgtub[.], element length = 8 bits (1 byte).
• For vcmpgtuh[.], element length = 16 bits (1 halfword).
• For vcmpgtuw[.], element length = 32 bits (1 word).

Each n-bit unsigned-integer byte element in register vA is compared to the cor-
responding n-bit unsigned-integer byte element in register vB. The correspond-
ing n-bit element in register vD is set to all ‘1’s if the element in register vA is 
greater than the element in register vB, and is set to all ‘0’s otherwise.

If Rc=1, CR Field 6 is set.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Vector Compare
Greater Than Signed 
Integer

vcmpgtsb[.]

vcmpgtsh[.]

vcmpgtsw[.]

vD,vA,vB

Let n = element length.
• For vcmpgtsb[.], element length = 8 bits (1 byte).
• For vcmpgtsh[.], element length = 16 bits (1 halfword).
• For vcmpgtsw[.], element length = 32 bits (1 word).

Each n-bit signed-integer byte element in register vA is compared to the corre-
sponding n-bit signed-integer byte element in register vB. The corresponding 
n-bit element in register vD is set to all ‘1’s if the element in register vA is 
greater than the element in register vB, and is set to all ‘0’s otherwise.

If Rc=1, CR Field 6 is set.

CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Vector Compare
Equal To Unsigned 
Integer

vcmpequb[.]

vcmpequh[.]

vcmpequw[.]

vD,vA,vB

Let n = element length.
• For vcmpgtub[.], element length = 8 bits (1 byte).
• For vcmpgtuh[.], element length = 16 bits (1 halfword).
• For vcmpgtuw[.], element length = 32 bits (1 word).

Each n-bit unsigned-integer byte element in register vA is compared to the cor-
responding n-bit unsigned-integer byte element in register vB. The correspond-
ing n-bit element in register vD is set to all ‘1’s if the element in register vA is 
equal to the element in register vB, and is set to all ‘0’s otherwise.

If Rc=1, CR Field 6 is set.

CR6 = all_equal_to || 0b0 || none_equal_to || 0b0.
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4.2.1.4 Vector Integer Logical Instructions

The vector integer logical instructions shown in Table 4-4 perform bit-parallel operations on the operands. 

4.2.1.5 Vector Integer Rotate and Shift Instructions

Table 4-5 describes the vector integer rotate instructions. 

Table 4-4. Vector Integer Logical Instructions  

Name Mnemonic Syntax Operation

Vector Logical AND vand vD,vA,vB AND the contents of register vA with the contents register vB and place the 
result into register vD.

Vector Logical OR vor vD,vA,vB OR the contents of register vA with the contents of register vB and place the 
result into register vD.

Vector Logical XOR vxor vD,vA,vB XOR the contents of register vA with the contents of register vB and place the 
result into register vD.

Vector Logical AND with 
Complement vandc vD,vA,vB AND the contents of register vA with the complement of the contents of register 

vB and place the result into register vD.

Vector Logical NOR vnor vD,vA,vB NOR the contents of register vA with the contents of register vB and place the 
result into register vD.

Table 4-5. Vector Integer Rotate Instructions  

Name Mnemonic Syntax Operation

Vector Rotate Left 
Integer

vrlb

vrlh

vrlw

vD,vA,vB

Let n = element length.
• For vrlb, element length = 8 bits (1 byte).
• For vrlh, element length = 16 bits (1 halfword).
• For vrlw, element length = 32 bits (1 word).

Each n-bit element in register vA is rotated left by the number of bits specified 
in the low-order log2(n) bits of the corresponding n-bit element in register vB. 
The result is placed into the corresponding n-bit element in register vD.
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Table 4-6 describes the vector integer shift instructions. 

4.2.2 Vector Floating-Point Instructions

This section describes the vector floating-point instructions, which include the following types of instructions:

• Arithmetic 
• Rounding and conversion 
• Compare 
• Floating-point estimate 

The vector floating-point data format complies with the ANSI/IEEE-754 standard. A quantity in this format 
represents: a signed normalized number, a signed denormalized number, a signed zero, a signed infinity, a 
quiet Not a Number (QNaN), or a signalling NaN (SNaN). Operations perform to a Java/IEEE/C9X-compliant 
subset of the IEEE standard; for further details on the Java or non-Java mode, see Section 3.2.1 Floating-
Point Modes. The Vector ISA does not report IEEE exceptions but rather produces default results as speci-
fied by the Java/IEEE/C9X Standard; for further details on exceptions, see Section 3.2.4 Floating-Point 
Exceptions.

Table 4-6. Vector Integer Shift Instructions  

Name Mnemonic Syntax Operation

Vector Shift Left Integer

vslb

vslh

vslw

vD,vA,vB

Let n = element length.
• For vslb, element length = 8 bits (1 byte).
• For vslh, element length = 16 bits (1 halfword).
• For vslw, element length = 32 bits (1 word).

Each n-bit element in register vA is shifted left by the number of bits specified in 
the low-order log2(n) bits of the corresponding n-bit element in register vB. Bits 
shifted out of bit 0 of the byte element are lost. Zeros are supplied to the 
vacated bits on the right. The result is placed into the corresponding n-bit ele-
ment in register vD.

Vector Shift Right 
Integer

vsrb

vsrh

vsrw

vD,vA,vB

Let n = element length.
• For vsrb, element length = 8 bits (1 byte).
• For vsrh, element length = 16 bits (1 halfword).
• For vsrw, element length = 32 bits (1 word).

Each n-bit element in register vA is shifted right by the number of bits specified 
in the low-order log2(n) bits of the corresponding n-bit element in register vB. 
Bits shifted out of bit n-1 of the n-bit element are lost. Zeros are supplied to the 
vacated bits on the left. The result is placed into the corresponding n-bit ele-
ment in register vD.

Vector Shift Right Alge-
braic Integer

vsrab

vsrah

vsraw

vD,vA,vB

Let n = element length.
• For vsrab, element length = 8 bits (1 byte).
• For vsrah, element length = 16 bits (1 halfword).
• For vsraw, element length = 32 bits (1 word).

Each n-bit element in register vA is shifted right by the number of bits specified 
in the low-order log2(n) bits of the corresponding n-bit element in register vB. 
Bits shifted out of bit n-1 of the n-bit element are lost. Bit 0 of the n-bit element 
is replicated to fill the vacated bits on the left. The result is placed into the corre-
sponding n-bit element in register vD.
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4.2.2.1 Floating-Point Division and Square-Root

Vector instructions do not have division or square-root instructions. Vector ISA implements Vector Reciprocal 
Estimate Floating-Point (vrefp) and Vector Reciprocal-Square-Root Estimate Floating-Point (vrsqrtefp) 
instructions along with a Vector Negative Multiply-Subtract Floating-Point (vnmsubfp) instruction assisting in 
the Newton-Raphson refinement of the estimates. To accomplish division, just multiply the dividend 
(x/y = x * 1/y) and square-root by multiplying the original number (Ðx = x * 1/Ðx). In this way, the Vector ISA 
provides inexpensive divides and square-roots that are fully pipelined, sub-operation scheduled, and faster 
even than many hardware dividers. Methods are available to further refine these to correct IEEE results, 
where necessary at the cost of additional software overhead.

Floating-Point Division

The Newton-Raphson refinement step for the reciprocal 1/B looks like this:

y1 = y0 + y0*(1 - B*y0), where y0 = recip_est(B)

This is implemented in the Vector ISA as follows:

y0 = vrefp(B)

 t = vnmsubfp(y0,B,1)

y1 = vmaddfp(y0,t,y0)

This produces a result accurate to almost 24 bits of precision (except in the case where B is a sufficiently 
small denormalized number that vrefp generates an infinity, that, if important, must be explicitly guarded 
against).

To get a correctly rounded IEEE quotient from the above result, a second Newton-Raphson iteration is 
performed to get a correctly rounded reciprocal (y2) to the required 24 bits of precision, then the residual.

R = A - B*Q

is computed with vnmsubfp (where A is the dividend, B the divisor, and Q an approximation of the quotient 
from A*y2). The correctly rounded quotient can then be obtained.

Q' = Q + R*y2

The additional accuracy provided by the fused nature of the vector instruction multiply-add is essential to 
producing the correctly rounded quotient by this method.

The second Newton-Raphson iteration may ultimately not be needed but more work must be done to show 
that the absolute error after the first refinement step would always be less than 1 ulp (unit in the last place), 
which is a requirement of this method.
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Floating-Point Square-Root

The Newton-Raphson refinement step for a reciprocal square root looks like the following equation:

y1 = y0 + 0.5*y0*(1 - B*y0*y0),   where y0 = recip_sqrt_est(B)

That can be implemented as follows:

y0 = vrsqrtefp(B)

t0 = vmaddfp(y0,y0,0.0)

t1 = vmaddfp(y0,0.5,0.0)

t0 = vnmsubfp(B,t0,1)

y1 = vmaddfp(t0,t1,y0)

Various methods can further refine a correctly rounded IEEE result—all more elaborate than the simple 
residual correction for division, and therefore are not presented here, but most of which also benefit from the 
negative multiply-subtract instruction. 

4.2.2.2 Floating-Point Arithmetic Instructions

Table 4-7 describes the floating-point arithmetic instructions. 

Table 4-7. Floating-Point Arithmetic Instructions  

Name Mnemonic Syntax Operation

Vector Add Floating-
Point

vaddfp vD,vA,vB

Each single-precision floating-point element in register vA is added to the cor-
responding single-precision floating-point element in register vB. Each interme-
diate result is rounded and placed in the corresponding single-precision 
floating-point element in register vD.

Vector Subtract 
Floating-Point

vsubfp vD,vA,vB

Each single-precision floating-point word element in register vB is subtracted 
from the corresponding single-precision floating-point word element in register 
vA. The result is rounded to the nearest single-precision floating-point number 
and placed into the corresponding word element of register vD.

Vector Maximum
Floating-Point 

vmaxfp vD,vA,vB

Each single-precision floating-point word element in register vA is compared to 
the corresponding single-precision floating-point word element in register vB. 
The larger of the two single-precision floating-point values is placed into the 
corresponding word element in register vD.

vmaxfp is sensitive to the sign of 0.0. When both operands are ±0.0:
� max(+0.0,±0.0) = max(±0.0,+0.0) ⇒ +0.0
� max(-0.0,-0.0) ⇒ -0.0
� max(NaN,x) ⇒ QNaN where x = any value

Vector Minimum 
Floating-Point 

vminfp vD,vA,vB

Each single-precision floating-point word element in register vA is compared to 
the corresponding single-precision floating-point word element in register vB. 
The smaller of the two single-precision floating-point values is placed into the 
corresponding word element in register vD.

vminfp is sensitive to the sign of 0.0. When both operands are ±0.0:
� min(-0.0,±0.0) = min(±0.0,-0.0) ⇒ -0.0
� min(+0.0,+0.0) ⇒ +0.0
� min(NaN,x) ⇒ QNaN where x = any value
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4.2.2.3 Vector Floating-Point Multiply-Add Instructions

Vector multiply-add instructions are critically important to performance because a multiply followed by a data 
dependent addition is the most common idiom in Digital Signal Processor (DSP) algorithms. In most imple-
mentations, floating-point multiply-add instructions will perform with the same latency as either a multiply or 
add alone, thus doubling performance in comparing to the otherwise serial multiply and adds.

Vector floating-point multiply-adds instructions fuse (a multiply-add fuse implies that the full product partici-
pates in the add operation without rounding, only the final result rounds). This not only simplifies the imple-
mentation and reduces latency (by eliminating the intermediate rounding), but also increases the accuracy 
compared to separate multiply and adds.

Be careful as Java-compliant programs cannot use multiply-add instructions fused directly because Java 
requires both the product and sum to round separately. Thus to achieve strict Java compliance, perform the 
multiply and add with separate instructions.

To realize multiply in the Vector ISA, use multiply-add instructions with a zero addend (for example, vmaddfp 
vD,vA,vC,vB where (vB = 0.0)).

Note:  In order to use multiply-add instructions to perform an IEEE or Java-compliant multiply, the addend 
must be -0.0. This is necessary to ensure that the sign of a zero result is correct when the product is either 
+0.0 or -0.0 (+0.0 + -0.0 ⇒ +0.0, and -0.0 + -0.0 ⇒ -0.0). When the sign of a resulting 0.0 is not important, 
then use +0.0 as the addend. This may, in some cases, avoid the need for a second register to hold a -0.0 in 
addition to the integer 0/floating-point +0.0 that may already be available.

Table 4-8 describes the floating-point multiply-add instructions.

Table 4-8. Vector Floating-Point Multiply-Add Instructions  

Name Mnemonic Syntax Operation

Vector Multiply- Add 
Floating-Point

vmaddfp vD,vA,vC,vB

Each single-precision floating-point word element in register vA is multiplied by 
the corresponding single-precision floating-point word element in register vC. 
The corresponding single-precision floating-point word element in register vB is 
added to the product. The result is rounded to the nearest single-precision 
floating-point number and placed into the corresponding word element in regis-
ter vD.

Vector Negative 
Multiply- Subtract 
Floating-Point

vnmsubfp vD,vA,vC,vB

Each single-precision floating-point word element in register vA is multiplied by 
the corresponding single-precision floating-point word element in register vC. 
The corresponding single-precision floating-point word element in register vB is 
subtracted from the product. The sign of the difference is inverted. The result is 
rounded to the nearest single-precision floating-point number and placed into 
the corresponding word element of register vD.
Note:  Only one rounding occurs in this operation. Also note that a QNaN result 
is not negated.
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4.2.2.4 Vector Floating-Point Rounding and Conversion Instructions

All vector floating-point arithmetic instructions use the IEEE default rounding mode, round-to-nearest. The 
Vector ISA does not provide the IEEE directed rounding modes.

The Vector ISA provides separate instructions for converting floating-point numbers to integral floating-point 
values for all IEEE rounding modes as follows:

• Round-to-nearest (vrfin) (round)
• Round-toward-zero (vrfiz) (truncate)
• Round-toward-minus-infinity (vrfim) (floor)
• Round-toward-positive-infinity (vrfip) (ceiling)

Floating-point conversions to integers (vctuxs, vctsxs) use round-toward-zero (truncate). Table 4-9 
describes the floating-point rounding instructions.

Table 4-9. Vector Floating-Point Rounding and Conversion Instructions  

Name Mnemonic Syntax Operation

Vector Round to 
Floating-Point Integer 
Nearest

vrfin vD,vB
Each single-precision floating-point word element in register vB is rounded to a 
single-precision floating-point integer, using the rounding mode Round to Near-
est, and placed into the corresponding word element of register vD.

Vector Round to 
Floating-Point Integer 
toward Zero

vrfiz vD,vB
Each single-precision floating-point word element in register vB is rounded to a 
single-precision floating-point integer, using the rounding mode Round toward 
Zero, and placed into the corresponding word element of register vD.

Vector Round to 
Floating-Point Integer 
toward Plus Infinity

vrfip vD,vB
Each single-precision floating-point word element in register vB is rounded to a 
single-precision floating-point integer, using the rounding mode Round toward 
+Infinity, and placed into the corresponding word element of register vD.

Vector Round to 
Floating-Point Integer 
toward Minus Infinity

vrfim vD,vB
Each single-precision floating-point word element in register vB is rounded to a 
single-precision floating-point integer, using the rounding mode Round toward 
-Infinity, and placed into the corresponding word element of register vD.

Vector Convert from 
Unsigned Fixed-Point 
Word 

vcfux vD,vB, UIMM

Each unsigned fixed-point integer word element in register vB is converted to 
the nearest single-precision floating-point value. The result is divided by 2UIMM 
(UIMM = unsigned immediate value) and placed into the corresponding word 
element in register vD.

Vector Convert from 
Signed Fixed-Point 
Word 

vcfsx vD,vB, UIMM
Each signed fixed-point integer word element in register vB is converted to the 
nearest single-precision floating-point value. The result is divided by 2UIMM and 
placed into the corresponding word element in register vD.

Vector Convert to 
Unsigned Fixed-Point 
Word Saturate

vctuxs vD,vB, UIMM

Each single-precision floating-point word element in register vB is multiplied by 
2UIMM. The product is converted to an unsigned fixed-point integer using the 
rounding mode Round toward Zero. If the intermediate result is greater than 
232-1, it saturates to 232-1. If the intermediate result is less than ‘0’, it saturates 
to ‘0’. If saturation occurs, the SAT bit is set. The unsigned-integer result is 
placed into the corresponding word element in register vD.

Vector Convert to 
Signed Fixed-Point 
Word Saturate

vctsxs vD,vB, UIMM

Each single-precision floating-point word element in register vB is multiplied by 
2UIMM. The product is converted to a signed fixed-point integer using the 
rounding mode, Round toward Zero. If the intermediate result is greater than 
231-1, it saturates to 231-1. If the intermediate result is less than -231, it satu-
rates to -231. If saturation occurs, the SAT bit is set. The signed-integer result is 
placed into the corresponding word element in register vD.
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4.2.2.5 Vector Floating-Point Compare Instructions

This section describes floating-point unordered compare instructions.

All vector floating-point compare instructions (vcmpeqfp, vcmpgtfp, vcmpgefp, and vcmpbfp) return 
FALSE if either operand is a NaN. Not-equal-to, not-greater-than, not-greater-than-or-equal-to, and not-in-
bounds NaNs compare to everything, including themselves.

Compares always return a Boolean mask (TRUE = 0x_FFFF_FFFF, FALSE = 0x_0000_0000) and never 
return a NaN. The vcmpeqfp instruction is recommended as the Isnan(vX) test. No explicit unordered 
compare instructions or traps are provided. However, the greater-than-or-equal-to predicate (≥) (vcmpgefp) 
is provided—in addition to the > and = predicates available for integer comparison—specifically to enable 
IEEE unordered comparison that would not be possible with just the > and = predicates. Table 4-10 lists the 
six common mathematical predicates and how they would be realized in vector/SIMD code. 
 

Table 4-11 shows the remaining eight useful predicates and how they might be realized in vector/SIMD code. 

Table 4-10. Common Mathematical Predicates 

Case Mathematical Predicate Vector Realization 
Relations

a>b a<b a=b ?

1 a = b a = b F F T F

2 a ≠ b (?<>) ¬ (a = b) T T F T

3 a > b a > b T F F F

4 a < b b > a F T F F

5 a ≥ b ¬ (b > a) T F T *T

6 a ≤ b ¬ (a > b) F T T *T

5a a ≥ b a ≥ b T F T F

6a a ≤ b b ≥ a F T T F

Note:  * Cases 5 and 6 implemented with greater-than (vcmpgtfp and vnor) would not yield the correct IEEE result when the relation is 
unordered.

Table 4-11. Other Useful Predicates 

Case Predicate Vector Realization
Relations

a>b a<b a=b ?

7 a ? b ¬ ((a=b) ∨ (b>a) ∨ (a>b)) F F F T

8 a <> b (a ≥ b) ⊕ (b ≥ a) T T F F

9  a <=> b (a ≥ b) ∨ (b ≥ a) T T T F

10 a ?> b ¬ (b ≥ a) T F F T

11 a ?>= b ¬ (b > a) T F T T

12 a ?< b ¬ (a ≥ b) F T F T

13 a ?<= b ¬ (a > b) F T T T

14 a ?= b ¬ ((a > b) ∨ (b > a)) F F T T
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The vector floating-point compare instructions compare the elements in two vector registers word-by-word, 
interpreting the elements as single-precision numbers. With the exception of the Vector Compare Bounds 
Floating-Point (vcmpbfp) instruction, they set the target vector register, and CR[6] if Rc = ‘1’, in the same 
manner as do the vector integer compare instructions.

The Vector Compare Bounds Floating-Point (vcmpbfp) instruction sets the target vector register, and CR[6] if 
Rc = ‘1’, to indicate whether the elements in vA are within the bounds specified by the corresponding element 
in vB, as explained in the instruction description. A single-precision value x is said to be within the bounds 
specified by a single-precision value y if (-y ≤ x ≤y).

Table 4-12 describes the floating-point compare instructions. 

Table 4-12. Vector Floating-Point Compare Instructions  (Page 1 of 2)

Name Mnemonic Syntax Operation

Vector Compare
Greater Than Floating-
Point [Record]

vcmpgtfp[.] vD,vA,vB

Each single-precision floating-point word element in register vA is compared to 
the corresponding single-precision floating-point word element in register vB. 
The corresponding word element in register vD is set to all ‘1’s if the element in 
register vA is greater than the element in register vB, and is set to all ‘0’s other-
wise.

If Rc = 1, CR Field 6 is set.

CR6 = all_greater_than || 0b0 || none_greater_than || 0b0.

Note:  If a vA or vB element is a NaN, the corresponding results will be 
0x0000_0000.
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Vector Compare
Equal to Floating-Point 
[Record]

vcmpeqfp[.] vD,vA, vB

Each single-precision floating-point word element in register vA is compared to 
the corresponding single-precision floating-point word element in register vB. 
The corresponding word element in register vD is set to all ‘1’s if the element in 
register vA is equal to the element in register vB, and is set to all ‘0’s otherwise.

If Rc=1, CR Field 6 is set 

CR6 = all_equal_to || 0b0 || none_equal_to || 0b0

Note:  If a register vA or register vB element is a NaN, the corresponding result 
will be 0x0000_0000.

Vector Compare
Greater Than or Equal 
to Floating-Point 
[Record]

vcmpgeqfp[.] vD,vA, vB

Each single-precision floating-point word element in register vA is compared to 
the corresponding single-precision floating-point word element in register vB. 
The corresponding word element in register vD is set to all ‘1’s if the element in 
register vA is greater than or equal to the element in register vB, and is set to 
all ‘0’s otherwise.

If Rc = 1, CR Field 6 is set:

CR6 = all_greater_or_equal || 0b0 || none_greater_or_equal || 0b0
Note:  If a vA or vB element is a NaN, the corresponding results will be 
0x0000_0000.

Vector Compare
Bounds Floating-Point 
[Record]

vcmpbfp[.] vD,vA, vB

Each single-precision floating-point word element in register vA is compared to 
the corresponding single-precision floating-point word element in register vB. A 
2-bit value is formed that indicates whether the element in register vA is within 
the bounds specified by the element in register vB, as follows.

Bit [0] of the 2-bit value is zero if the element in register vA is less than or equal 
to the element in register vB, and is one otherwise. Bit [1] of the 2-bit value is 
zero if the element in register vA is greater than or equal to the negative of the 
element in register vB, and is one otherwise.

The 2-bit value is placed into the high-order two bits of the corresponding word 
element (bits [0–1] for word element 0, bits [32–33] for word element 1, bits 
[64–65] for word element 2, bits [96–97] for word element 3) of register vD and 
the remaining bits of the element are set to 0.

If Rc=1, CR Field 6 is set to indicate whether all four elements in register vA are 
within the bounds specified by the corresponding element in register vB, as fol-
lows:

CR6 = 0b00 || all_within_bounds || 0
Note:  If any single-precision floating-point word element in register vB is nega-
tive, the corresponding element in register vA is out of bounds. Note that if a 
register vA or a register vB element is a NaN, the two high order bits of the cor-
responding result will both have the value 1.

Table 4-12. Vector Floating-Point Compare Instructions  (Page 2 of 2)

Name Mnemonic Syntax Operation
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4.2.2.6 Vector Floating-Point Estimate Instructions

Table 4-13 describes the floating-point estimate instructions. 

4.2.3 Vector Load and Store Instructions 

Only very basic load and store operations are provided in the Vector ISA. This keeps the circuitry in the 
memory path fast so that the latency of memory operations will be low. Instead, a powerful set of field manip-
ulation instructions is provided to manipulate data into the required alignment and arrangement after the data 
has been brought into the vector registers.

Load vector indexed (lvx, lvxl) and store vector indexed (stvx, stvxl) instructions transfer an aligned quad-
word vector between memory and vector multimedia registers. Load vector left/right indexed (lvlx, lvlxl, lvrx, 
lvrxl) and store vector left/right indexed (stvlx, stvlxl, stvrx, stvrxl) instructions are provided in the Cell 
Broadband Engine to transfer an unaligned quadword vector between memory and vector multimedia regis-
ters. Load vector element indexed (lvebx, lvehx, lvewx) and store vector element indexed instructions 
(stvebx, stvehx, stvewx) transfer byte, halfword, and word scalar elements between memory and vector 
multimedia registers.

All vector loads and vector stores use the index (rA|0 + rB) addressing mode to specify the target memory 
address. The Vector ISA does not provide any update forms. An lvebx, lvehx, or lvewx instruction transfers 
a scalar data element from memory into the destination vector register, leaving other elements in the vector 
with boundedly undefined values. An stvebx, stvehx, or stvewx instruction transfers a scalar data element 
from the source vector register to memory leaving other elements in the quadword unchanged. No data align-
ment occurs; that is, all scalar data elements are transferred directly on their natural memory byte lanes to or 
from the corresponding element in the vector register. Quadword memory accesses made by lvx, lvxl, stvx, 
and stvxl instructions are not guaranteed to be atomic. 

4.2.3.1 Alignment

All memory references must be size aligned. If a vector load or store address is not properly size aligned, the 
suitable number of least significant bits are ignored, and a size aligned transfer occurs instead. Data align-
ment must be performed explicitly after being brought into the registers. No assistance is provided to help in 
aligning individual scalar elements that are not aligned on their natural size boundary. However, assistance is 
provided for justifying non-size-aligned vectors. This is provided through the special Load Vector for Shift Left 

Table 4-13. Vector Floating-Point Estimate Instructions  

Name Mnemonic Syntax Operation

Vector Reciprocal 
Estimate Floating-Point

vrefp vD,vB
The single-precision floating-point estimate of the reciprocal of each single-pre-
cision floating-point element in register vB is placed into the corresponding ele-
ment in register vD.

Vector Reciprocal 
Square Root Estimate 
Floating-Point

vrsqrtefp vD,vB
The single-precision estimate of the reciprocal of the square root of each sin-
gle-precision element in register vB is placed into the corresponding word ele-
ment of register vD.

Vector Log2 Estimate 
Floating-Point

vlogefp vD,vB
The single-precision floating-point estimate of the base 2 logarithm of each sin-
gle-precision floating-point word element in register vB is placed into the corre-
sponding element in register vD.

Vector 2 Raised to the 
Exponent Estimate 
Floating-Point

vexptefp vD,vB
The single-precision floating-point estimate of 2 raised to the power of each sin-
gle-precision floating-point element in register vB is placed into the correspond-
ing element in register vD.
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(lvsl) and Load Vector for Shift Right (lvsr) instructions that compute the proper Vector Permute (vperm) 
control vector from the misaligned memory address. For details on how to use these instructions to align data 
see Section 3.1.4 Quadword Data Alignment.

The lvx, lvxl, lvlx, lvlxl, lvrx, lvrxl, stvx, stvxl, stvlx, stvlxl, stvrx, and stvrxl instructions can be used to 
move all sorts of data, not just multimedia data, in typical PowerPC environments. Therefore, because vector 
loads and stores are size-aligned, care should be taken to align data on even quadword boundaries for 
maximum performance.

4.2.3.2 Vector Load and Store Address Generation

Vector load and store operations generate effective addresses using register indirect with index mode.

All vector load and store instructions use register indirect with index addressing mode that causes the 
contents of two general-purpose registers (specified as operands rA and rB) to be added in the generation of 
the effective address (EA). A zero in place of the rA operand causes a zero to be added to the contents of the 
general purpose register (GPR) specified in rB. The option to specify rA or ‘0’ is shown in the instruction 
descriptions as (rA|0). If the address becomes unaligned, for a halfword, word, or quadword, when combining 
addresses (rA|0 + rB), the effective address is ANDed with the appropriate zero values to boundary align the 
address as summarized in Table 4-14.

Figure 4-1 shows how an effective address is generated when using register indirect with index addressing.

Table 4-14. Effective Address Alignment  

Operand Effective Address Bit Setting

Indexed Halfword EA[63] ‘0’

Indexed Word EA[62–63] ‘00’

Indexed Quadword EA[60–63] ‘0000’
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Figure 4-1. Register Indirect with Index Addressing for Loads/Stores 
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4.2.3.3 Vector Load Instructions

For vector load instructions, the byte, halfword, or word addressed by the effective address (EA) is loaded 
into vD.

Table 4-15 describes the vector load instructions. 

Table 4-15. Vector Load Instructions (Page 1 of 2) 

Name Mnemonic Syntax Operation

Load Vector Element 
Byte Indexed

lvebx vD,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

• For 64-bit implementations, let eb = EA[60-63]

The byte in memory addressed by the EA is loaded into the byte element eb in 
register vD. 
The remaining bytes in register vD are set to undefined values.

Load Vector Element 
Halfword Indexed

lvehx vD,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

For 64-bit implementations:
• Bit [63] of EA is set to 0.
• Let eb = EA[60-62].

The halfword in memory addressed by the EA is loaded into the halfword ele-
ment eb in register vD. 
The remaining halfwords in register vD are set to undefined values.

Load Vector Element 
Word Indexed

lvewx vD,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

• For 64-bit implementations:
• Bits [62-63] of EA are set to ‘0’.
• Let eb = EA[60-61].

The word in memory addressed by the EA is loaded into the word element eb in 
register vD. 
The remaining words in register vD are set to undefined values.

Note:  

1. The Load Vector Left/Right Indexed [Last] instructions described above are supported only on the Cell Broadband Engine proces-
sor and are not portable to other processors that support vector/SIMD processing.
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The lvsl and lvsr instructions can be used to create the permute control vector to be used by a subsequent 
vperm instruction. Let X and Y be the contents of vA and vB specified by vperm. The control vector created 
by lvsl causes the vperm to select the high-order 16 bytes of the result of shifting the 32-byte value X || Y left 
by sh bytes (sh = the value in EA[60-63]). The control vector created by lvsr causes the vperm to select the 
low-order 16 bytes of the result of shifting X || Y right by sh bytes. 

These instructions can also be used to rotate or shift the contents of a vector register left, lvsl, or right, lvsr, 
by sh bytes. For rotating, the vector register to be rotated should be specified as both the vA and the vB 
register for vperm. For shifting left, the vB register for vperm should be a register containing all zeros and vA 
should contain the value to be shifted, and vice versa for shifting right. For further examples on how to align 
the data, see Section 3.1.4 Quadword Data Alignment. 

Load Vector Indexed 
[Last]

lvx

lvxl
vD,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

• For 64-bit implementations, bits [60-63] of EA are set to ‘0’.

Load the quadword in memory addressed by the EA into vD.

lvxl provides a hint that the quadword in memory addressed by EA will proba-
bly not be needed again by the program in the near future.

Load Vector Left 
Indexed [Last]1 

lvlx

lvlxl
vD,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

Let eb be the value of bits [60-63] of EA.

The 16-eb bytes in memory addressed by EA are loaded into the left-most 
16-eb byte elements of vD. The right-most eb byte elements of vD are set to 
‘0’.

lvlxl provides a hint that the quadword in memory addressed by EA will proba-
bly not be needed again by the program in the near future.

Load Vector Right 
Indexed [Last]1

lvrx

lvrxl
vD,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

Let eb be the value of bits [60-63] of EA.

If eb is not equal to ‘0’ (for example, EA is not quadword-aligned), then eb bytes 
in memory addressed by EA-eb are loaded into the right-most eb byte ele-
ments of vD and the left-most 16-eb byte elements of vD are set to ‘0’.

If eb is equal to ‘0’ (for example, EA is quadword-aligned), then the contents of 
vD are set to ‘0’.

lvrxl provides a hint that the quadword in memory addressed by the EA will 
probably not be needed again by the program in the near future.

Table 4-15. Vector Load Instructions (Page 2 of 2) 

Name Mnemonic Syntax Operation

Note:  

1. The Load Vector Left/Right Indexed [Last] instructions described above are supported only on the Cell Broadband Engine proces-
sor and are not portable to other processors that support vector/SIMD processing.
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Table 4-16 describes the vector alignment instructions. 

Table 4-16. Vector Load Instructions Supporting Alignment  

Name Mnemonic Syntax Operation

Load Vector for Shift 
Left

lvsl vD,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

• For 64-bit implementations, let sh = bits [60-63] of EA.

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes 
sh:sh+15 of X are placed into register vD.

Load Vector for Shift 
Right

lvsr vD,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

• For 64-bit implementations, let sh = bits [60-63] of EA.

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes 
(16-sh):(31-sh) of X are placed into register vD.
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4.2.3.4 Vector Store Instructions 

For vector store instructions, the contents of a vector register used as a source (vS) are stored into the byte, 
halfword, word or quadword in memory addressed by the effective address (EA). Table 4-17 describes the 
vector store instructions. 

Table 4-17. Vector Store Instructions (Page 1 of 2) 

Name Mnemonic Syntax Operation

Store Vector Element 
Byte Indexed

stvebx vS,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

• For 64-bit implementations, let eb = EA[60-63]
The contents of byte element eb in register vS is stored into the byte in memory 
addressed by EA.

Store Vector Element 
Halfword Indexed

stvehx vS,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

For 64-bit implementations:
• Bit [63] of EA is set to ‘0’.
• Let eb = EA[60-62].

The contents of halfword element eb in register vS is stored into the halfword in 
memory addressed by EA.

Store Vector Element 
Word Indexed

stvewx vS,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

For 64-bit implementations, let eb = EA[60:61]:
• Bits [62-63] of EA are set to ‘0’.
• Let eb = EA[60:61].

The contents of word element eb in register vS is stored into the word in mem-
ory addressed by EA.

Note:  

1. The Store Vector Left/Right Indexed [Last] instructions described above are supported only on the Cell Broadband Engine proces-
sor and are not portable to other processors that support vector/SIMD processing.
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4.2.4 Control Flow

Vector instructions can be freely intermixed with existing PowerPC instructions to form a complete program. 
Vector instructions do provide a vector compare and select mechanism to implement conditional execution as 
the preferred mechanism to control data flow in vector programs. In addition, vector compare instructions can 
update the Condition Register thus providing the communication from vector execution units to PowerPC 
branch instructions necessary to modify program flow based on vector data.

4.2.5 Vector Permutation and Formatting Instructions

Vector pack, unpack, merge, splat, permute, and select can be used to accelerate various vector math and 
vector formatting. Details of the various instructions follow.

4.2.5.1 Vector Pack Instructions

Halfword vector pack instructions (vpkuhum, vpkuhus, vpkshus, vpkshss) truncate the 16 halfwords from 
two concatenated source operands producing a single result of 16 bytes (quadword) using either modulo(28), 
8-bit signed-saturation, or 8-bit unsigned-saturation to perform the truncation. Similarly, word vector pack 
instructions (vpkuwum, vpkuwus, vpkswus, vpksws) truncate the 8 words from two concatenated source 
operands producing a single result of 8 halfwords using modulo(2^16), 16-bit signed-saturation, or 16-bit 
unsigned-saturation to perform the truncation.

Store Vector Left 
Indexed [Last]1

stvlx

stvlxl
vS,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

Let eb be the value of bits [60-63] of EA.

The contents of the left-most 16-eb byte elements of vS are stored into the 
16-eb bytes of memory addressed by EA.

stvlxl provides a hint that the quadword in memory addressed by EA will prob-
ably not be needed again by the program in the near future.

Store Vector Right 
Indexed [Last]1

stvrx

stvrxl
vS,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

Let eb be the value of bits [60-63] of EA.

If eb is not equal to ‘0’ (for example, EA is not quadword-aligned), then the con-
tents of the right-most eb byte elements of vS are stored into the eb bytes of 
memory addressed by EA-eb.

If eb is equal to ‘0’ (for example, EA is quadword-aligned), then memory is not 
altered by this instruction.

stvrxl provides a hint that the quadword in memory addressed by EA will prob-
ably not be needed again by the program in the near future.

Store Vector Indexed 
[Last]

stvx

stvxl
vS,rA,rB

Let the effective address EA be the sum of the contents of register rA, or the 
value ‘0’ if rA is equal to ‘0’, and the contents of register rB. 

• For 64-bit implementations, bits [60-63] of EA are set to ‘0’

Store the contents of vS into the quadword in memory addressed by the EA.

stvxl provides a hint that the quadword in memory addressed by EA will proba-
bly not be needed again by the program in the near future.

Table 4-17. Vector Store Instructions (Page 2 of 2) 

Name Mnemonic Syntax Operation

Note:  

1. The Store Vector Left/Right Indexed [Last] instructions described above are supported only on the Cell Broadband Engine proces-
sor and are not portable to other processors that support vector/SIMD processing.
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One special purpose form of Vector Pack Pixel (vpkpx) instruction is provided that packs eight 32-bit 
(8/8/8/8) pixels from two concatenated source operands into a single result of eight 16-bit 1/5/5/5 αRGB 
pixels. The least significant bit of the first 8-bit element becomes the 1-bit α field, and each of the three 8-bit 
R, G, and B fields are reduced to 5 bits by discarding the 3 least significant bits.

Table 4-18 describes the vector pack instructions. 

Table 4-18. Vector Pack Instructions  

Name Mnemonic Syntax Operation

Vector Pack Unsigned 
Integer Unsigned 
Modulo

vpkuhum

vpkuwum
vD, vA, vB

Let n = element length.
• For vpkuhum, let n = 16 bits.
• For vpkuwum, let n = 32 bits.

Let the source vector be the concatenation of the contents of register vA fol-
lowed by the contents of register vB.

The low-order (n÷2) bits of each n-bit element in the source vector is placed 
into the corresponding (n÷2)-bit element of register vD.

Vector Pack Unsigned 
Integer Unsigned 
Saturate

vpkuhus

vpkuwus
vD, vA, vB

Let n = element length.
• For vpkuhus, let n = 16 bits.
• For vpkuwus, let n = 32 bits.

Let the source vector be the concatenation of the contents of register vA fol-
lowed by the contents of register vB.

Each n-bit unsigned integer element in the source vector is converted to an 
(n÷2)-bit unsigned integer. If the value of the element is greater than 2(n÷2)-1, 
the result saturates to 2(n÷2)-1. If saturation occurs, the SAT bit is set. The 
result is placed into the corresponding (n÷2)-bit element of register vD.

Vector Pack Signed 
Integer Unsigned 
Saturate

vpkshus

vpkswus
vD, vA, vB

Let n = element length.
• For vpkshus, let n = 16 bits.
• For vpkswus, let n = 32 bits.

Let the source vector be the concatenation of the contents of register vA fol-
lowed by the contents of register vB.

Each n-bit signed integer element in the source vector is converted to an 
(n÷2)-bit unsigned integer. If the value of the element is greater than 2(n÷2)-1, 
the result saturates to 2(n÷2)-1. If the value of the element is less than ‘0’, the 
result saturates to ‘0’. If saturation occurs, the SAT bit is set. The result is 
placed into the corresponding (n÷2)-bit element of register vD.

Vector Pack Signed 
Integer Signed Saturate

vpkshss

vpkswss
vD, vA, vB

Let n = element length.
• For vpkshss, let n = 16 bits.
• For vpkswss, let n = 32 bits.

Let the source vector be the concatenation of the contents of register vA fol-
lowed by the contents of register vB.

Each n-bit signed integer element in the source vector is converted to an 
(n÷2)-bit signed integer. If the value of the element is greater than 2(n÷2)-1-1, 
the result saturates to 2(n÷2)-1-1. If the value of the element is less than -2(n÷2)-
1, the result saturates to -2(n÷2)-1. If saturation occurs, the SAT bit is set. The 
result is placed into the corresponding (n÷2)-bit element of register vD.

Vector Pack Pixel vpkpx vD, vA, vB

The source vector is the concatenation of the contents of register vA followed 
by the contents of register vB. 

Each word element in the source vector is packed to produce a 16-bit value as 
described below and placed into the corresponding halfword element of regis-
ter vD. A word is packed to 16 bits by concatenating, in order, the following bits.

• bit [7] of the first byte (bit [7] of the word)
• bits [0-4] of the second byte (bits [8-12] of the word)
• bits [0-4] of the third byte (bits [16-20] of the word)
• bits [0-4] of the fourth byte (bits [24-28] of the word)
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4.2.5.2 Vector Unpack Instructions

Byte vector unpack instructions unpack the 8 low bytes (or 8 high bytes) of one source operand into 8 half-
words using sign extension to fill the most significant bytes (MSBs). Halfword vector unpack instructions 
unpack the 4 low halfwords (or 4 high halfwords) of one source operand into 4 words using sign extension to 
fill the msb(s).

A special purpose form of vector unpack is provided, the Vector Unpack Low Pixel (vupklpx) and the Vector 
Unpack High Pixel (vupkhpx) instructions for 1/5/5/5 αRGB pixels. The 1/5/5/5 pixel vector unpack, unpacks 
the four low 1/5/5/5 pixels (or four 1/5/5/5 high pixels) into four 32-bit (8/8/8/8) pixels. The 1-bit α element in 
each pixel is sign extended to 8 bits, and the 5-bit R, G, and B elements are each zero extended to 8 bits.

Table 4-19 on page 84 describes the unpack instructions. 

Table 4-19. Vector Unpack Instructions  

Name Mnemonic Syntax Operation

Vector Unpack High 
Signed Integer

vupkhsb

vupkhsh
vD, vB

Let n = element length.
• For vupkhsb, let n = 8 bits.
• For vupkhsh, let n = 16 bits.

Each n-bit signed integer element in the high-order half of register vB is sign-
extended to produce a (2×n)-bit signed integer and placed, in the same order, 
into register vD.

Vector Unpack High 
Pixel

vupkhpx vD, vB

Each halfword element in the high-order half of register vB is unpacked to pro-
duce a 32-bit value as described below and placed, in the same order, into the 
four words of register vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the 
following operations:

• sign-extend bit [0] of the halfword to 8 bits
• zero-extend bits [1–5] of the halfword to 8 bits
• zero-extend bits [6–10] of the halfword to 8 bits
• zero-extend bits [11–15] of the halfword to 8 bits

Vector Unpack Low 
Signed Integer

vupklsb

vupklsh
vD, vB

Let n = element length.
• For vupklsb, let n = 8 bits.
• For vupklsh, let n = 16 bits.

Each n-bit signed integer byte element in the low-order half of register vB is 
sign-extended to produce a (n×2)-bit signed integer and placed, in the same 
order, into register vD.

Vector Unpack Low 
Pixel

vupklpx vD, vB

Each halfword element in the low-order half of register vB is unpacked to pro-
duce a 32-bit value as described below and placed, in the same order, into the 
four words of register vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the 
following operations.

• sign-extend bit [0] of the halfword to 8 bits
• zero-extend bits [1–5] of the halfword to 8 bits
• zero-extend bits [6–10] of the halfword to 8 bits
• zero-extend bits [11–15] of the halfword to 8 bits
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4.2.5.3 Vector Merge Instructions

Byte vector merge instructions interleave the 8 low bytes (or 8 high bytes) from two source operands 
producing a result of 16 bytes. Similarly, halfword vector merge instructions interleave the 4 low halfwords (or 
4 high halfwords) of two source operands producing a result of 8 halfwords. Word vector merge instructions 
interleave the 2 low words (or 2 high words) from two source operands producing a result of 4 words. The 
vector merge instruction has many uses; notable among them is a way to efficiently transpose SIMD vectors. 
Table 4-20 describes the merge instructions. 

Table 4-20. Vector Merge Instructions  

Name Mnemonic Syntax Operation

Vector Merge High 
Integer

vmrghb

vmrghh

vmrghw

vD, vA, vB

Let n = element length.
• For vmrghb, let n = 8 bits.
• For vmrghh, let n = 16 bits.
• For vmrghw, let n = 32 bits.

The n-bit elements in the high-order half of register vA are placed, in the same 
order, into the even-numbered n-bit elements of register vD. The n-bit ele-
ments in the high-order half of register vB are placed, in the same order, into 
the odd-numbered n-bit elements of register vD.

Vector Merge Low 
Integer

vmrglb

vmrglh

vmrglw

vD, vA, vB

Let n = element length.
• For vmrglb, let n = 8 bits.
• For vmrglh, let n = 16 bits.
• For vmrglw, let n = 32 bits.

The n-bit elements in the low-order half of register vA are placed, in the same 
order, into the even-numbered n-bit elements of register vD. The n-bit ele-
ments in the low-order half of register vB are placed, in the same order, into the 
odd-numbered n-bit elements of register vD.
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4.2.5.4 Vector Splat Instructions

When a program needs to perform an arithmetic vector, the vector splat instructions can be used in prepara-
tion for performing arithmetic for which one source vector is to consist of elements that all have the same 
value (for example, multiplying all elements of a vector register by a constant). Vector splat instructions can 
be used to move data where it is required. For example, to multiply all elements of a vector register by a 
constant, the vector splat instructions can be used to splat the scalar into the vector register. Likewise, when 
storing a scalar into an arbitrary memory location, it must be splatted into a vector register, and that register 
specified as the source of the store. This will guarantee that the data appears in all possible positions of that 
scalar size for the store. Table 4-21 describes the vector splat instructions.

4.2.5.5 Vector Permute Instructions

Permute instructions allow any byte in any two source vector registers to be directed to any byte in the desti-
nation vector. The fields in a third source operand specify from which field in the source operands the corre-
sponding destination field will be taken. The Vector Permute (vperm) instruction is a very powerful one that 
provides many useful functions. For example, it provides a good way to perform table lookups and data align-
ment operations. For an example of how to use the instruction in aligning data, see Section 3.1.4 Quadword 
Data Alignment. Table 4-22 describes the vector permute instruction.

Table 4-21. Vector Splat Instructions 

Name Mnemonic Syntax Operation

Vector Splat 

Integer

vspltb

vsplth

vspltw

vD, vB, UIMM

Let n = element length.
• For vspltb, let n = 8 bits.
• For vsplth, let n = 16 bits.
• For vspltw, let n = 32 bits.

The contents of n-bit element UIMM in register vB are replicated into each n-bit 
element of register vD.

Vector Splat 

Immediate Signed 
Integer

vspltisb

vspltish

vspltisw

vD, SIMM

Let n = element length.
• For vspltisb, let n = 8 bits.
• For vspltish, let n = 16 bits.
• For vspltisw, let n = 32 bits.

The value of the signed immediate value (SIMM) field, sign-extended to the n 
bits, is replicated into each n-bit element of register vD.

Table 4-22. Vector Permute Instruction 

Name Mnemonic Syntax Operation

Vector Permute vperm vD, vA,vB,vC 

Let the source vector be the concatenation of the contents of register vA fol-
lowed by the contents of register vB. 

For each integer i in the range 0 to 15, the contents of the byte element in the 
source vector specified in bits [3:7] of byte element i in register vC are placed 
into byte element i of register vD.
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4.2.5.6 Vector Select Instruction

Data flow in the vector unit can be controlled without branching by using a vector compare and the vector 
select (vsel) instructions. In this use, the compare result vector is used directly as a mask operand to vector 
select instructions.The vsel instruction selects one field from one or the other of two source operands under 
control of its mask operand. Use of the TRUE/FALSE compare result vector with select in this manner 
produces a two instruction equivalent of conditional execution on a per-field basis. Table 4-23 describes the 
vsel instruction. 

4.2.5.7 Vector Shift Instructions

The vector shift instructions shift the contents of a vector register or of a pair of vector registers left or right by 
a specified number of bytes (vslo, vsro, vsldoi) or bits (vsl, vsr). Depending on the instruction, this shift 
count is specified either by low-order bits of a vector register or by an immediate field in the instruction. In the 
former case, the low-order 7 bits of the shift count register give the shift count in bits (0 ≤ count ≤ 127). Of 
these 7 bits, the high-order 4 bits give the number of complete bytes by which to shift and are used by vslo 
and vsro; the low-order 3 bits give the number of remaining bits by which to shift and are used by vsl and 
vsr.

There are two methods of specifying an interelement shift or rotate of two source vector registers, extracting 
16 bytes as the result vector. There is also a method for shifting a single source vector register left or right by 
any number of bits.

Table 4-24 describes the various vector shift instructions. 

Table 4-23. Vector Select Instruction 

Name Mnemonic Syntax Operation

Vector Select vsel vD,vA,vB,vC

For each bit in register vC that contains the value 0, the corresponding bit in 
register vA is placed into the corresponding bit of register vD. For each bit in 
register vC that contains the value ‘1’, the corresponding bit in register vB is 
placed into the corresponding bit of register vD.

Table 4-24. Vector Shift Instructions  (Page 1 of 2)

Name Mnemonic Syntax Operation

Vector Shift Left vsl vD,vA,vB

Let sh be equal to the contents of bits 125:127 of register vB; sh is the shift 
count in bits (0 ≤ sh ≤ 7). 

The contents of register vA are shifted left by sh bits. Bits shifted out of bit [0] 
are lost. Zeros are supplied to the vacated bits on the right. The result is placed 
into register vD.

The contents of the low-order 3 bits of all byte elements in register vB must be 
identical to the contents of bits [125-127] of register vB; otherwise, the value 
placed into register vD is undefined.

Vector Shift Left Double 
by Octet Immediate

vsldoi vD,vA,vB,SH
Let the source vector be the concatenation of the contents of register vA fol-
lowed by the contents of register vB. Bytes SHB:SHB + 15 of the source vector 
are placed into register vD.
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Immediate Interelement Shifts/Rotates

The Vector Shift Left Double by Octet Immediate (vsidoi) instruction provides the basic mechanism that can 
be used to provide interelement shifts or rotates. This instruction is like a vperm, except that the shift count is 
specified as a literal in the instruction rather than as a control vector in another vector register, as is required 
by vperm. The result vector consists of the left-most 16 bytes of the rotated 32-byte concatenation of vA:vB, 
where shift (SH) is the rotate count. Table 4-25 below enumerates how various shift functions can be 
achieved using the vsidoi instruction. 

Computed Interelement Shifts/Rotates

The Load Vector for Shift Left (lvsl) instruction and Load Vector for Shift Right (lvsr) instruction are supplied 
to assist in shifting or rotating vector registers by an amount determined at run time. The input specifications 
have the same form as the vector load and store instructions; that is, they use register indirect with index 
addressing mode(rA|0 +rB). This is because one of their primary purposes is to compute the permute control 
vector necessary for post-load and pre-store shifting necessary for dealing with unaligned vectors.

Vector Shift Left by 
Octet

vslo vD,vA,vB

The contents of register vA are shifted left by the number of bytes specified by 
the contents of bits [121-124] of register vB. Bytes shifted out of byte 0 are lost. 
Zeros are supplied to the vacated bytes on the right. The result is placed into 
register vD.

Vector Shift Left vsr vD,vA,vB

Let sh be equal to the contents of bits 125:127 of register vB; sh is the shift 
count in bits (0 ≤ sh ≤ 7). The contents of register vA are shifted right by sh bits. 
Bits shifted out of bit [127] are lost. Zeros are supplied to the vacated bits on 
the left. The result is placed into register vD.
The contents of the low-order 3 bits of all byte elements in register vB must be 
identical to the contents of bits [125-127] of register vB; otherwise, the value 
placed into register vD is undefined.

Vector Shift Right by 
Octet

vsro vD,vA,vB

The contents of register vA are shifted right by the number of bytes specified by 
the contents of bits [121-124] of register vB. Bytes shifted out of vA are lost. 
Zeros are supplied to the vacated bytes on the left. The result is placed into 
register vD.

Table 4-25. Coding Various Shifts and Rotates with the vsidoi Instruction 

To Get This: Code This:

Operation sh Instruction Immediate vA vB

rotate left double 0–15 vsidoi 0–15 MSV LSV

rotate left double 16–31 vsidoi mod16(SH) LSV MSV

rotate right double 0–15 vsidoi 16–sh MSV LSV

rotate right double 16–31 vsidoi 16–mod16(SH) LSV MSV

shift left single, zero fill 0–15 vsidoi 0–15 MSV 0x0

shift right single, zero fill 0–15 vsidoi 16–SH 0x0 MSV

rotate left single 0–15 vsidoi 0–15 MSV =vA

rotate right single 0–15 vsidoi 16–SH MSV =vA

MSV = most significant vector
LSV = least significant vector

Table 4-24. Vector Shift Instructions  (Page 2 of 2)

Name Mnemonic Syntax Operation
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This lvsl instruction can be used to align an unaligned vector after loading the aligned vectors that contain its 
pieces. The lvsl instruction can be used to unalign a vector register for use in a read-modify-write sequence 
that will store an unaligned vector.

Variable Interelement Shifts

A vector register can be shifted left or right by a number of bits specified in a vector register. This operation is 
supported with four instructions, two for right shift and two for left shift.

The Vector Shift Left by Octet (vslo) and Vector Shift Right by Octet (vsro) instructions shift a vector register 
from 0 to 15 bytes as specified in bits [121–124] of another vector register. The Vector Shift Left (vsl) and 
Vector Shift Right (vsr) instructions shift a vector register from 0 to 7 bits as specified in another vector 
register (the shift count must be specified in the three least significant bits of each byte in the vector and must 
be identical in all bytes or the result is boundedly undefined). In all of these instructions, zeros are shifted into 
vacated element and bit positions.

Used sequentially with the same shift count vector register, these instructions will shift a vector register left or 
right from 0 to 127 bits as specified in bits [121–127] of the shift-count vector register. For example:

vslo      VZ, VX, VY

vspltb    VY, VY, 15

vsl       VZ, VZ, VY

will shift vX by the number of bits specified in vY and place the results in vZ.

With these instructions, a full double-register shift can be performed in seven instructions. The following code 
will shift vW||vX left by the number of bits specified in vY placing the result in vZ:

vslo      t1, VW, VY ; shift the most significant. register left

vspltb    VY, VY, 15

vsl       t1, t1, VY

vsububm   VY, V0, VY ; adjust count for right shift (V0=0)

vsro      t2, VX, VY ; right shift least sign. register

vsr       t2, t2, VY

vor       VZ, t1, t2 ; merge to get the final result

4.2.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the PowerPC Condition Register (CR), 
Machine State Register (MSR), and Special-Purpose Registers (SPRs). See Chapter 4, “Addressing Mode 
and Instruction Set Summary,” in PowerPC Microprocessor Family: The Programming Environments Manual 
for 64-Bit Microprocessors, for information about the instructions used for reading from and writing to the 
MSR and SPRs.
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4.2.6.1 Vector Status and Control Register Instructions

Table 4-26 summarizes the instructions for reading from or writing to the Vector Status and Control Register 
(VSCR). For more information about VSCR, see section in Section 2.2.2 Vector Status and Control Register. 
 

Table 4-26. Move to/from Condition Register Instructions  

Name Mnemonic Syntax Operation

Move to Vector Status and Control Register mtvscr vB Place the contents of vB into VSCR.

Move from Vector Status and Control Register mfvscr vD Place the contents of VSCR into vD.
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4.3 Vector VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the memory model that can 
be assumed by software processes, and includes descriptions of the cache model, cache-control instructions, 
address aliasing, and other related issues. Implementations that conform to the VEA also adhere to the UISA, 
but may not necessarily adhere to the OEA. For further details, see Chapter 4, “Addressing Mode and 
Instruction Set Summary,” in PowerPC Microprocessor Family: The Programming Environments Manual for 
64-Bit Microprocessors.

This section describes the additional instructions that are provided by the Vector ISA for the VEA.

4.3.1 Memory Control Instructions—VEA

Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions
• Segment lookaside buffer management instructions
• Translation lookaside buffer (TLB) management instructions

This section describes the user-level cache management instructions defined by the VEA. See Chapter 4, 
“Addressing Mode and Instruction Set Summary,” in PowerPC Microprocessor Family: The Programming 
Environments Manual for 64-Bit Microprocessors for more information about supervisor-level cache, segment 
register manipulation, and TLB management instructions.

4.3.2 User-Level Cache Instructions—VEA

The instructions summarized in this section provide user-level programs the ability to manage on-chip caches 
if they are implemented. See Chapter 5, “Cache Model and Memory Coherency,” in PowerPC Microprocessor 
Family: The Programming Environments Manual for 64-Bit Microprocessors for more information about cache 
topics.

Bandwidth between the processor and memory is managed explicitly by the programmer through the use of 
cache management instructions. These instructions provide a way for software to communicate to the cache 
hardware how it should prefetch and prioritize writeback of data. The principal instruction for this purpose is a 
software directed cache prefetch instruction called Data Stream Touch (dst). Other related instructions are 
provided for complete control of the software directed cache prefetch mechanism.

Table 4-27 summarizes the directed prefetch cache instructions defined by the VEA.  

Note:  These instructions are accessible to user-level programs.
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Table 4-27. User-Level Cache Instructions (Page 1 of 2) 

Name Mnemonic Syntax Operation

Data Stream Touch 
(nontransient, T = 0) dst rA,rB,STRM

This instruction associates the data stream specified by the contents of rA and 
rB with the stream ID specified by STRM.
This instruction is a hint that performance will probably be improved if the cache 
blocks containing the specified data stream are fetched into the data cache 
because the program will probably soon load from the stream, and that 
prefetching from any data stream that was previously associated with the spec-
ified stream ID is no longer needed. The data stream is likely to be loaded from 
fairly frequently in the near future. The hint is ignored for blocks that are Cach-
ing Inhibited.
The specified data stream is defined by the following values:
EA: (rA), where rA ≠ 0; if rA = 0, the instruction form is invalid.
unit size: (rB)[35–39] if (rB)[35-39] ≠ 0; otherwise 32
count: (rB)[40–47] if (rB)[40–47] ≠ 0; otherwise 256
stride: (rB)[48–63 if (rB)[48–63] ≠ 0; otherwise 32768

Data Stream Touch
(transient, T = 1)

dstt rA,rB,STRM

This instruction associates the data stream specified by the contents of rA and 
rB with the stream ID specified by STRM. 
This instruction is a hint that performance will probably be improved if the cache 
blocks containing the specified data stream are fetched into the data cache 
because the program will probably soon load from the stream, and that 
prefetching from any data stream that was previously associated with the spec-
ified stream ID is no longer needed. The data stream is likely to be transient 
and referenced very few times. The hint is ignored for blocks that are Caching 
Inhibited.
The specified data stream is defined by the following values:
EA: (rA), where rA ≠ 0; if rA = 0, the instruction form is invalid. 
unit size: (rB)[35–39] if (rB)[35-39] ≠ 0; otherwise 32
count: (rB)[40–47] if (rB)[40–47] ≠ 0; otherwise 256
stride: (rB)[48–63] if (rB)[48–63] ≠ 0; otherwise 32768

Data Stream Touch for 
Store 
(nontransient, T = 0)

dstst rA,rB,STRM

This instruction associates the data stream specified by the contents of regis-
ters rA and rB with the stream ID specified by STRM.
This instruction is a hint that performance will probably be improved if the cache 
blocks containing the specified data stream are fetched into the data cache 
because the program will probably soon store into the stream, and that 
prefetching from any data stream that was previously associated with the spec-
ified stream ID is no longer needed. The data stream is likely to be stored into 
fairly frequently in the near future. The hint is ignored for blocks that are Cach-
ing Inhibited.
The specified data stream is defined by the following values:
EA: (rA), where rA ≠ 0; if rA = 0, the instruction form is invalid.
unit size: (rB)[35–39] if (rB)[35-39] ≠ 0; otherwise 32
count: (rB)[40–47] if (rB)[40–47] ≠ 0; otherwise 256
stride: (rB)[48–63] if (rB)[48–63] ≠ 0; otherwise 32768

Note:  The Cell Broadband Engine processor treats the instructions described above as no-ops. Applications should use the Data 
Cache Block Touch instructions described in the PowerPC Virtual Environment Architecture, Book II to prefetch data on the Cell Broad-
band Engine processor.
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4.3.3 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for some of the most 
frequently used operations (such as no-op, load immediate, load address, move register, and complement 
register). Assemblers should provide the simplified mnemonics listed below. Programs written to be portable 
across the various assemblers for the PowerPC Architecture should not assume the existence of mnemonics 
unless they are described in this document.

Data Stream Touch for 
Store (transient, T = 1) dststt rA,rB,STRM

This instruction associates the data stream specified by the contents of rA and 
rB with the stream ID specified by STRM.
This instruction is a hint that performance will probably be improved if the cache 
blocks containing the specified data stream are fetched into the data cache 
because the program will probably soon store into the stream, and that 
prefetching from any data stream that was previously associated with the spec-
ified stream ID is no longer needed. The data stream is likely to be transient 
and referenced very few times. The hint is ignored for blocks that are Caching 
Inhibited.
The specified data stream is defined by the following values:
EA: (rA), where rA ≠ 0; if rA = 0, the instruction form is invalid. 
unit size: (rB)[35–39] if (rB)[35-39] ≠ 0; otherwise 32
count: (rB)[40–47] if (rB)[40–47] ≠ 0; otherwise 256
stride: (rB)[48–63] if (rB)[48–63] ≠ 0; otherwise 32768

Data Stream Stop dss STRM,A

If A = ‘0’ and a data stream associated with the stream ID specified by STRM 
exists, this instruction terminates prefetching of that data stream.
If A = ‘1’, this instruction terminates prefetching of all existing data streams. 
(The STRM field is ignored.)
In addition, executing a dss instruction ensures that all memory accesses asso-
ciated with data stream prefetching caused by preceding dst and dstst instruc-
tions that specified the same stream ID as that specified by the dss instruction 
(A = ‘0’), or by all preceding dst and dstst instructions (A = ‘1’), will be in group 
G1 with respect to the memory barrier created by a subsequent sync instruc-
tion.
dss serves as both a basic and an extended mnemonic. The assembler will 
recognize a dss mnemonic with two operands as the basic form, and a dss 
mnemonic with one operand as the extended form.
Execution of a dss instruction causes address translation for the specified data 
stream(s) to cease. Prefetch requests for which the effective address has 
already been translated may complete and may place the corresponding data 
into the data cache.

Data Stream Stop All dssall

Terminates prefetching of all existing data streams. All active streams may be 
stopped.
If the optional data stream prefetch facility is implemented, dssall (extended 
mnemonic for dss) terminates any data stream prefetching requested by the 
interrupted program in order to avoid prefetching data in the wrong context, 
consuming memory bandwidth fetching data that are not likely to be needed by 
the other program, and interfering with data cache use by the other program. 
The dssall must be followed by a sync, and additional software synchroniza-
tion may be required.

Table 4-27. User-Level Cache Instructions (Page 2 of 2) 

Name Mnemonic Syntax Operation

Note:  The Cell Broadband Engine processor treats the instructions described above as no-ops. Applications should use the Data 
Cache Block Touch instructions described in the PowerPC Virtual Environment Architecture, Book II to prefetch data on the Cell Broad-
band Engine processor.
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Simplified mnemonics are provided for the Data Stream Touch (dst) and Data Stream Touch for Store (dstst) 
instructions so that they can be coded with the transient indicator as part of the mnemonic rather than as a 
numeric operand. Similarly, simplified mnemonics are provided for the Data Stream Stop (dss) instruction so 
that it can be coded with the all streams indicator as part of the mnemonic. These are shown as examples 
with the instructions in Table 4-28.

Table 4-28. Simplified Mnemonics for Data Stream Touch (dst)  

Operation Simplified Mnemonic Equivalent to

Data Stream Touch (nontransient) dst rA, rB, STRM  dst rA, rB, STRM,0

Data Stream Touch (transient) dstt rA, rB, STRM  dst rA, rB, STRM,1

Data Stream Touch for Store (nontransient) dstst rA, rB, STRM  dstst rA, rB, STRM,0

Data Stream Touch for Store (transient) dststt rA, rB, STRM  dststt rA, rB, STRM,1

Data Stream Stop (one stream) dss STRM  dss STRM,0

Data Stream Stop All dssall  dss 0,1

Note:  The Cell Broadband Engine processor treats the instructions described above as no-ops. Applications should use the Data 
Cache Block Touch instructions described in the PowerPC Virtual Environment Architecture, Book II to prefetch data on the Cell Broad-
band Engine processor.
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5. Cache, Exceptions, and Memory Management

This chapter summarizes details of the vector processing technology definition that pertain to cache and 
memory management models. Note that the vector processing technology defines most of its instructions at 
the user-level (UISA). Because most vector instructions are computational, there is little effect on the virtual 
environment architecture (VEA) and operating environment architecture (OEA) portions of the PowerPC 
Architecture definition. 

Because the vector Instruction Set Architecture (ISA) uses 128-bit operands, additional instructions are 
provided to optimize cache and memory bus use.

5.1 PowerPC Shared Memory

To fully understand the data stream prefetch instructions for the vector processing unit (VPU), one needs to 
know the PowerPC Architecture for shared memory. The PowerPC Architecture supports the sharing of 
memory between programs, between different instances of the same program, and between processors and 
other mechanisms. It also supports access to memory by one or more programs using different effective 
addresses. All these cases are considered memory sharing. Memory is shared in blocks that are an integral 
number of pages.

When the same memory has different effective addresses, the addresses are said to be aliases. Each appli-
cation can be granted separate access privileges to aliased pages.

5.1.1 PowerPC Memory Access Ordering

The memory model for the ordering of memory accesses is weakly consistent. This model provides an oppor-
tunity for improved performance over a model that has stronger consistency rules, but places the responsi-
bility on the program to ensure that ordering or synchronization instructions are properly placed when 
necessary for the correct execution of the program. The order in which the processor performs memory 
accesses, the order in which those accesses are performed with respect to another processor or mechanism, 
and the order in which those accesses are performed in main memory may all be different.

Several means of enforcing an ordering of memory accesses are provided to allow programs to share 
memory with other programs, or with mechanisms such as I/O devices: 

• If two store instructions specify memory locations that are both caching inhibited and guarded, then the 
corresponding memory accesses are performed in program order with respect to any processor or mech-
anism.

• If a load instruction depends on the value returned by a preceding load instruction (because the value is 
used to compute the effective address specified by the second load), the corresponding memory 
accesses are performed in program order with respect to any processor or mechanism to the extent 
required by the memory coherence required attributes associated with the access, if any. This applies 
even if the dependency has no effect on program logic (for example, the value returned by the first load is 
ANDed with zero and then added to the effective address specified by the second load).

• When a processor (P1) executes a synchronize or eieio instruction, a memory barrier is created, which 
separates applicable memory accesses into two groups, G1 and G2. G1 includes all applicable memory 
accesses associated with instructions preceding the barrier-creating instruction, and G2 includes all 
applicable memory accesses associated with instructions following the barrier-creating instruction. The 
memory barrier ensures that all memory accesses in G1 will be performed with respect to any processor 
or mechanism, to the extent required by the memory coherence required attributes associated with the 
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access, if any, before any memory accesses in G2 are performed with respect to that processor or mech-
anism.

The ordering done by a memory barrier is said to be “cumulative” if it also orders memory accesses that are 
performed by processors and mechanisms other than P1, as follows:

• G1 includes all applicable memory accesses by any such processor or mechanism that have been per-
formed with respect to P1 before the memory barrier is created.

• G2 includes all applicable memory accesses by any such processor or mechanism that are performed 
after a load instruction executed by that processor or mechanism has returned the value accessed by a 
store that is in G2.

The memory barrier created by the synchronize instruction is cumulative, and applies to all memory accesses 
except those associated with fetching instructions following the synchronize instruction. See the description 
of the eieio instruction in the PowerPC Microprocessor Family: The Programming Environments Manual for 
64-bit Microprocessors for a description of the corresponding properties of the memory barrier created by that 
instruction.

No ordering should be assumed among the memory accesses caused by a single instruction (that is, by an 
instruction for which the access is not atomic), and no means are provided for controlling that order.

5.2 VPU Memory Bandwidth Management

The Vector ISA provides a way for software to speculatively load larger blocks of data from memory. That is, 
you can use bandwidth that would otherwise be idle, which permits the software to take advantage of locality 
and reduces the number of system memory accesses. 

5.2.1 Software-Directed Prefetch

Bandwidth between the processor and memory is managed explicitly by the programmer through use of 
cache management instructions. These instructions let software indicate to the cache hardware how to 
prefetch and prioritize writeback of data. The principle instruction for this purpose is a software-directed 
cache prefetch instruction, Data Stream Touch (dst), described in Section 5.2.1.1.

Notes:  

• The Cell Broadband Engine processor treats data stream instructions as no-ops. 

• The Cell Broadband Engine processor implements an extended definition of dcbt. See PowerPC Virtual 
Environment Architecture, Book II for more information.

5.2.1.1 Data Stream Touch (dst)

The data stream prefetch facility permits a program to indicate that a sequence of units of memory is likely to 
be accessed soon by memory access instructions. Such a sequence is called a data stream or, when the 
context is clear, just a stream. A data stream is defined by the following values: 

• EA—The effective address of the first unit in the sequence

• Unit size—The number of quadwords in each unit; 0 < unit size ≤ 32

• Count—The number of units in the sequence; 0 < count ≤ 256
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• Stride—The number of bytes between the effective address of one unit in the sequence and the effective 
address of the next unit in the sequence (that is, the effective address of the nth unit in the sequence is 
EA + (n - 1) x stride); (-32768 ≤ stride < 0 or 0 < stride ≤ 32768)

The units need not be aligned on a particular memory boundary. The stride may be negative.

The dst instruction specifies a starting address, a block size (1–32 vectors), a number of blocks to prefetch 
(1–256 blocks), and a signed stride in bytes (-32,768 to +32,768 bytes), The 2-bit tag, specified as an imme-
diate field in the opcode, identifies one of four possible touch streams. The starting address of the stream is 
specified in rA (if rA = 0, the instruction form is invalid). BlockSize, BlockCount, and BlockStride are specified 
in rB. Do not confuse the term ‘cache block’; the term ‘block’ always indicates a PowerPC cache block. 

The format of the rB register is shown in Figure 5-1. 

There is no zero-length block size, block count, or block stride. A BlockSize of 0 indicates 32 vectors, a Block-
Count of 0 indicates 256 blocks, and a BlockStride of 0 indicates +32,768 bytes. Otherwise, these fields 
correspond to the numeric value of the size, count, and stride. Do not specify strides smaller than 1 block (16 
bytes).

The programmer specifies block size in terms of vectors (16 bytes), regardless of the cache-block size. Hard-
ware automatically optimizes the number of cache blocks it fetches to bring a block into the cache. The 
number of cache blocks fetched into the cache for each block is the fewest natural number of cache blocks 
needed to fetch the entire block, including the effects of block misalignment to cache blocks, as shown in the 
following equation:

The address of each block in a stream is a function of the stream’s starting address, the block stride, and the 
block being fetched. The starting address can be any byte address. Each block’s address is computed as a 
full byte address from the following equation:

The address of the first cache block fetched in each block is that block’s address aligned to the next lower 
natural cache-block boundary by ignoring log2(CacheBlockSize) least significant bits (lsbs) (for example, for 
32-byte cache-blocks, the five lsbs are ignored). Cache blocks are then fetched sequentially forward until the 
entire block of vectors is brought into the cache. An example of a six-block data stream is shown in Figure 5-2 
on page 98. 

Figure 5-1. Format of rB in dst Instruction 

BlockSize

31161587320

BlockCount Signed BlockStride0 0 0

CacheBlocksFetched = ceiling
BlockSize + mod(BlockAddr,CacheBlockSize)

CacheBlockSize

BlockAddrn = (rA) + n (rB)16–31
where n = {0 ... (BlockCount – 1)}
and      if ((rB)16–31 = 0) then ((rB)16–31         32768)
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Executing a dst instruction notifies the cache/memory subsystem that the program will soon need the speci-
fied data. If bandwidth is available, the hardware starts loading the specified stream into the cache. To the 
extent that hardware can acquire the data, when the loads requiring the data finally execute, the target data 
will be in the cache. Executing a second dst to the tag of a stream in progress cancels the existing stream (at 
hardware’s earliest convenience) and establishes a new stream with the same stream tag ID.

The dst instruction is a hint to hardware and has no architecturally visible effects (in the PowerPC UISA 
sense). The hardware is free to ignore it, to start the prefetch when it can, to cancel the stream at any time, or 
to prioritize other memory operations ahead of it. If a stream is canceled, the program still functions properly, 
but subsequent loads experience the full latency of a cache miss. 

The dst instruction does not introduce implementation problems like those of load/store multiple/string 
instructions. Because dst does not affect the architectural state, it does not cause interlock problems associ-
ated with load/store multiple/string instructions. Also, dst does take exceptions and requires no complex 
recovery mechanism.

Touch instructions should be considered strong hints. Using them in highly speculative situations could waste 
considerable bandwidth. Implementations that do not implement the stream mechanism treat stream instruc-
tions (dst, dstt, dsts, dstst, dss, and dssall) as no-ops. If the stream mechanism is implemented, all four 
streams must be provided.

5.2.1.2 Transient Streams (dstt)

The memory subsystem considers dst an indication that its stream data is likely to have some reasonable 
degree of locality and be referenced several times or over some reasonably long period. This is called persis-
tence. The Data Stream Touch Transient instruction (dstt) indicates to the memory system that its stream 
data is transient; that is, it has poor locality and is likely to be used very few times or only for a very short time. 
A memory subsystem can use this knowledge to effectively manage the location and retention of transient 
data in the processor’s cache/memory design. An implementation can ignore the distinction between tran-
sience and persistence; in that case, dstt acts like dst. However, portable software should always use the 
correct form of dst or dstt regardless of whether the intended processor makes that distinction. 

Figure 5-2. Data Stream Touch 
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5.2.1.3 Storing to Streams (dstst)

A dst instruction brings a cache block into the cache subsystem in the state most efficient for subsequent 
reading of data from it (load). The companion instruction, Data Stream Touch for Store (dstst), brings the 
cache block into the cache subsystem in the state most efficient for subsequent writing to it (store). For 
example, in a modified/exclusive/shared/invalid (MESI) cache subsystem, a dst might bring a cache block in 
the shared (S) state. However, a dstst would bring the cache block in the exclusive (E) state to avoid a 
subsequent demand-driven bus transaction taking ownership of the cache block so that the store can 
proceed. 

The dstst streams are the same physical streams as dst streams; that is, dstst stream tags are aliases of 
dst tags. If not implemented, dstst defaults to dst. If dst is not implemented, it is a no-op. The dststt instruc-
tion is a transient version of dstst.

Data stream prefetching of memory locations is not supported when bit 57 of the segment table entry or bit 0 
of the Segment Register (SR) is set. If a dst or dstst instruction specifies a data stream containing these 
memory locations, results are undefined.

5.2.1.4 Stopping Streams (dss)

The dst instructions have a counterpart called Data Stream Stop (dss). A program can stop any given stream 
prefetch by executing dss with that stream’s tag. This is useful when a program speculatively starts a stream 
prefetch but later determines that the instruction stream went the wrong way. The dss instruction can stop the 
stream so that no more bandwidth is wasted. All active streams can be stopped by using dssall. This is 
useful when the operating system needs to stop all active streams (process switch) but does not know how 
many streams are in progress. 

Because dssall does not specify the number of implemented streams, it should always be used instead of a 
sequence of dss instructions to stop all streams. 

Neither dss nor dssall is execution synchronizing; the time between when a dss is issued and when the 
stream stops is not specified. Therefore, when software must ensure that the stream is physically stopped 
before continuing (for example, before changing virtual memory mapping), a special sequence of synchro-
nizing instructions is required. The sequence can differ for different situations, but the following sequence 
works in all contexts:

dssall ; stop all streams
sync ; insert a barrier in memory pipe
lwz Rn,... ; stick one more operation in memory pipe
cmpd Rn,Rn ;
bne- *-4 ; make sure load data is back
isync ; wait for all previous instructions to

; complete to ensure 
; memory pipe is clear and nothing is 
; pending in the old context

Data stream prefetching for a given stream is terminated by executing the appropriate dss instruction. The 
termination can be synchronized by executing a sync instruction after the dss instruction if the memory 
barrier created by sync orders all address translation effects of the subsequent context-altering instructions. 
Otherwise, data dependencies are also required. For example, the following instruction sequence terminates 
all data stream prefetching before altering the contents of an SR:

dssall ; stop all data stream prefetching 
sync ; order dssall before load 
lwz  Ry,sr_y(Rx) ; load new SR value
mtsr y,Ry ; alter SR y
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The mtsr instruction cannot be executed until the lwz loads the SR value into Ry. The memory access 
caused by the lwz cannot be performed until the dssall instruction takes effect (that is, until address transla-
tion stops for all data streams and all memory accesses associated with data stream prefetches for which the 
effective address was translated before the translation stopped are performed).

5.2.1.5 Exception Behavior of Prefetch Streams

In general, exceptions do not cancel streams. Streams are sensitive to whether the processor is in user or 
supervisor mode (determined by MSR[PR]) and whether data address translation is used (determined by 
MSR[DR]). This allows prefetch streams to behave predictably when an exception occurs.

Streams are suspended in real addressing mode (MSR[DR] = ‘0’) and remain suspended until translation is 
turned back on (MSR[DR] is set). A dst instruction issued while data translation is off (MSR[DR] = ‘0’) 
produces boundedly-undefined results.

A stream is suspended whenever the MSR[PR] is different than it was when the dst that established it was 
issued. For example, if a dst is issued in user mode (MSR[PR] = ‘1’), the resulting stream is suspended when 
the processor enters supervisor mode (MSR[PR] = ‘0’) and remains suspended until the processor returns to 
user mode. Conversely, if the dst were issued in supervisor mode, it is suspended if the machine enters user 
mode. 

Because exceptions do not cancel streams automatically, the operating system must stop streams explicitly 
when warranted, for example when switching processes or changing virtual memory context. Care must be 
taken if data stream prefetching is used in supervisor-level state (MSR[PR] = ‘0’).

After an exception, the supervisor-level program that next changes MSR[DR] from ‘0’ to ‘1’ causes data-
stream prefetching to resume for any data streams for which the corresponding dst or dstst instruction was 
executed in supervisor mode; such streams are called supervisor-level data streams. This program is unlikely 
to be the one that executed the corresponding dst or dstst instruction and is unlikely to use the same 
address translation context as that in which the dst or dstst was executed. (Suspension and resumption of 
data stream prefetching work more naturally for user level data streams, because the next application 
program to be dispatched after an exception occurs is likely to be the most recently interrupted program.) 
Thus, an exception handler that changes the context in which data addresses are translated may need to 
terminate data-stream prefetching for supervisor-level data streams and to synchronize the termination 
before changing MSR[DR] to ‘1’.

Although terminating all data stream prefetching in this case would satisfy the requirements of the architec-
ture, doing so would adversely affect the performance of applications that use data-stream prefetching. Thus, 
it may be better for the operating system to record stream IDs associated with any supervisor-level data 
streams and to terminate prefetching for those streams only.

Cache effects of supervisor-level data-stream prefetching can also adversely affect performance of applica-
tions that use data stream prefetching, because supervisor-level use of the associated stream ID can take 
over an applications’ data stream. 

Data stream instructions cannot cause exceptions directly. Therefore, any event that would cause an excep-
tion on a normal load or store, such as a page fault or protection violation, is instead canceled and ignored. 
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Suspension or termination of data stream prefetching for a given data stream need not cancel prefetch 
requests for that data stream for which the effective address has been translated and need not cause data 
returned by such requests to be discarded. However, to improve software’s ability to pace data stream 
prefetching with data consumption, it may be better to limit the number of these pending requests that can 
exist simultaneously.

5.2.1.6 Synchronization Behavior of Streams

Streams are not affected (stopped or suspended) by execution of any PowerPC synchronization instructions 
(sync, isync, or eieio). This permits these instructions to be used for synchronizing multiple processors 
without disturbing background prefetch streams. Prefetch streams have no architecturally observable effects 
and are not affected by synchronization instructions. Synchronizing the termination of data stream 
prefetching is needed only by the operating system.

5.2.1.7 Address Translation for Streams

Like dcbt and dcbtst instructions, dst, dstst, dstt, and dststt are treated as loads with respect to address 
translation, memory protection, and reference and change recording. 

Unlike dcbt and dcbtst instructions, stream instructions that cause a translation lookaside buffer (TLB) miss 
cause a page table search and the page descriptor to be loaded into the TLB. Conceptually, address transla-
tion and protection checking is performed on every cache-block access in the stream and proceeds normally 
across page boundaries and TLB misses, terminating only on page faults or protection violations that cause a 
data storage interrupt (DSI) exception.

Stream instructions operate like normal PowerPC cache instructions (such as dcbt) with respect to guarded 
memory; they are not subject to normal restrictions against prefetching in guarded space because they are 
program directed. However, speculative dst instructions cannot start a prefetch stream to guarded space. 

If the effective address of a cache block within a data stream cannot be translated, or if loading from the block 
would violate memory protection, the processor will terminate prefetching of that stream. (Continuing to 
prefetch subsequent cache blocks within the stream might cause prefetching to get too far ahead of 
consumption of prefetched data.) If the effective address can be translated, a TLB miss can cause such 
termination, even on implementations for which TLBs are reloaded in software.

5.2.1.8 Stream Usage Notes 

A given data stream exists if a dst or dstst instruction has been executed that specifies the stream and 
prefetching of the stream has neither completed, terminated, or been supplanted. Prefetching of the stream 
has completed, when all the memory locations within the stream that will ever be prefetched as a result of 
executing the dst or dstst instruction have been prefetched (for example, locations for which the effective 
address cannot be translated will never be prefetched). Prefetching of the stream is terminated by executing 
the appropriate dss instruction; it is supplanted by executing another dst or dstst instruction that specifies 
the stream ID associated with the given stream. Because there are four stream IDs, as many as four data 
streams may exist simultaneously.
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The maximum block count of dst is small because of its preferred usage. It is not intended for a single dst 
instruction to prefetch an entire data stream. Instead, dst instructions should be issued periodically, for 
example on each loop iteration, for the following reasons:

• Short, frequent dst instructions better synchronize the stream with consumption. 

• With prefetch closely synchronized just ahead of consumption, another activity is less likely to inadvert-
ently evict prefetched data from the cache before it is needed. 

• The prefetch stream is restarted automatically after an exception (that could have caused the stream to 
be terminated by the operating system) with no additional complex hardware mechanisms needed to 
restart the prefetch stream. By limiting the granularity of prefetches to small blocks, the adverse effect of 
an exception killing the prefetch is also limited to that smaller prefetch because the next prefetch will be 
encountered sooner. 

Issuing new dst instructions to stream tag IDs in progress terminates old streams—dst instructions cannot be 
queued. 

For example, when multiple dst instructions are used to prefetch a large stream, it would be poor strategy to 
issue a second dst whose stream begins at the specified end of the first stream before it was certain that the 
first stream had completed. This could terminate the first stream prematurely, leaving much of the stream 
unprefetched.

Paradoxically, it would also be unwise to wait for the first stream to complete before issuing the second dst. 
Detecting completion of the first stream is not possible. Therefore, the program would have to introduce a 
pessimistic waiting period before restarting the stream and then incur the full start-up latency of the second 
stream. 

The correct strategy is to issue the second dst well before the anticipated completion of the first stream and 
begin it at an address overlapping the first stream by an amount sufficient to cover any portion of the first 
stream that could not yet have been prefetched. Issuing the second dst too early is not a concern because 
blocks prefetched by the first stream hit in the cache and need not be refetched. Thus, even if issued prema-
turely and overlapped excessively, the second dst rapidly advances to the point of prefetching new blocks. 
This strategy allows a smooth transition from the first stream to the second without significant breaks in the 
prefetch stream.

For the greatest performance benefit from data-stream prefetching, use the dst and dstst (and dss) instruc-
tions so that the prefetched data is used soon after it is available in the data cache. Pacing data stream 
prefetching with consumption increases the likelihood that prefetched data is not displaced from the cache 
before it is used, and reduces the likelihood that prefetched data displaces other data needed by the 
program.

Specifying each logical data stream as a sequence of shorter data streams helps achieve the required 
pacing, even in the presence of exceptions and address translation failures. The components of a given 
logical data stream should have the following attributes:

• The same stream ID should be associated with each component.

• The components should partially overlap (that is, the first part of a component should consist of the same 
memory locations as the last part of the preceding component).

• The memory locations that do not overlap with the next component should be large enough that a sub-
stantial portion of the component is prefetched. That is, prefetch enough memory locations for the current 
component before it is taken over by the prefetching being done for the next component.



Programming Environments Manual

  Vector/SIMD Multimedia Extension Technology

Version 2.07c
October 26, 2006  
 

Cache, Exceptions, and Memory Management

Page 103 of 329

5.2.1.9 Stream Implementation Assumptions

Some processors, including the Cell Broadband Engine processor, treat dst, dstt, dstst, dss, and dssall 
instructions as no-ops. However, if a processor implements these instructions, a minimum level of function-
ality will be provided to create as consistent a programming model across different machines as possible. 
Programs can assume the following functionality in these instructions:

• Implements all four tagged streams.

• Implements each tagged stream as a separate, independent stream with arbitration for memory access 
performed on a round-robin basis. 

• Searches the table for each stream access that misses in the TLB.

• Does not cancel streams on page boundary crossings.

• Does not cancel streams on exceptions (except DSI exceptions caused by the stream).

• Does not cancel streams, or stall execution of subsequent instructions pending completion of streams, on 
the PowerPC synchronization instructions sync, isync, or eieio.

• Does not cancel streams on TLB misses that occur on loads or stores issued concurrently with running 
streams. However, a DSI exception from one of those loads or stores may cause streams to be canceled.

5.2.2 Prioritizing Cache Block Replacement 

Load Vector Indexed Last (lvxl) and Store Vector Indexed Last (stvxl) instructions provide explicit control 
over cache block replacement by letting the programmer indicate whether an access is likely to be the last 
reference made to the cache block containing this load or store. The cache hardware can then prioritize 
replacement of this cache block over others with older but more useful data. 

Data accessed by a normal load or store is likely to be needed more than once. Marking this data as most-
recently used (MRU) indicates that it should be a low-priority candidate for replacement. However, some 
data, such as that used in Digital Signal Processor (DSP) multimedia algorithms, is rarely reused and should 
be marked as the highest priority candidate for replacement. 

Normal accesses mark data MRU. Data unlikely to be reused can be marked least recently used (LRU). For 
example, on replacing a cache block marked LRU by one of these instructions, a processor may improve 
cache performance by evicting the cache block without storing it in intermediate levels of the cache hierarchy 
(except to maintain cache consistency). 

5.2.3 Partially Executed Vector Instructions 

The OEA permits certain instructions to be partially executed when an alignment or DSI exception occurs. In 
the same way that the target register can be altered when floating-point load instructions cause a DSI excep-
tion, if the vector/SIMD multimedia extension facility is implemented, the target register (vD) can be altered 
when lvx, lvxl, lvlx, lvlxl, lvrx, or lvrxl is executed and the TLB entry is invalidated before the access 
completes. See the section about partially executed instructions in PowerPC Operating Environment Archi-
tecture, Book III for more information. 

Exceptions cause data stream prefetching to be suspended for all existing data streams. Prefetching for a 
given data stream resumes when control is returned to the interrupted program, if the stream still exists (for 
example, the operating system did not terminate prefetching for the stream).
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5.3 DSI Exception—Data Address Breakpoint

The data address breakpoint mechanism provides a way to detect load and store accesses to a designated 
doubleword. The address comparison is done on an effective address (EA). The data address breakpoint 
mechanism is controlled by the Data Address Breakpoint Register (DABR) and the Data Address Breakpoint 
Register Extension (DABRX). See the Data Address Breakpoint section in PowerPC Operating Environment 
Architecture, Book III for more information.

5.4 VPU Unavailable Exception (0x00F20) 

The vector facility includes an additional instruction-caused, precise exception to those defined by the OEA 
and discussed in Chapter 6, “Exceptions,” in the PowerPC Microprocessor Family: The Programming Envi-
ronments Manual for 64-bit Microprocessors. A VPU unavailable exception occurs when no higher priority 
exception exists (see Table 5-2 on page 105), an attempt is made to execute a vector instruction, and 
MSR[VEC] = ‘0’. 

Register settings for VPU unavailable exceptions are described in Table 5-1. 

When a VPU unavailable exception is taken, instruction execution resumes at offset 0x00F20. 

The dst and dstst instructions are supported if MSR[DR] = ‘1’. If either instruction is executed when 
MSR[DR] = ‘0’ (real addressing mode), results are boundedly undefined.

Conditions that cause this exception are prioritized among instruction-caused (synchronous), precise excep-
tions as shown in Table 5-2 on page 105 (taken from the section “Exception Priorities,” in Chapter 6, “Excep-
tions,” PowerPC Microprocessor Family: The Programming Environments Manual for 64-bit Microprocessors. 

Table 5-1. VPU Unavailable Exception—Register Settings  

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the exception

SRR1

0–32 Loaded with equivalent bits from the Machine State Register (MSR) 
33–36 Cleared
37–41 Loaded with equivalent bits from the MSR 
42–47 Cleared
48–63 Loaded with equivalent bits from the MSR
Note:  Depending on the implementation, additional bits in the MSR may be copied to SRR1.

MSR

SF1 1
ISF1 —
VEC 0
POW 0
ILE —

EE 0
PR 0
FP 0
ME —
FE0 0

SE 0
BE 0
FE1 0
IP —
IR 0

DR 0
RI 0
LE Set to value of ILE

1. 64-bit implementations only
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Table 5-2. Exception Priorities (Synchronous/Precise Exceptions)  

Priority Exception 

31

Instruction dependent—When an instruction causes an exception, the exception mechanism waits for any instructions before 
the excepting instruction in the instruction stream to complete. Any exceptions caused by these instructions are handled first. 
It then generates the appropriate exception if no higher priority exception exists when the exception is to be generated. 
Note:  A single instruction can cause multiple exceptions. When this occurs, those exceptions are ordered in priority as indi-
cated in the following list:

A. Integer loads and stores
a. Program illegal instruction
b. DSI, Data Segment, or Alignment
c. Trace (if implemented)

B. Floating-point loads and stores
a. Program illegal instruction
b. Floating-point unavailable
c. DSI, Data Segment, or Alignment
d. Trace (if implemented)

C. Other floating-point instructions
a. Floating-point unavailable
b. Program—Precise-mode floating-point enabled exception
c. Trace (if implemented)

D. Vector Loads and Stores (if VPU facility implemented)
a. VPU unavailable
c. Trace (if implemented)

E. rfid and mtmsrd (or mtmsr)
a. Program—Precise-mode floating-point enabled exception
b. Trace (if implemented), for mtmsrd (or mtmsr) only

If precise-mode IEEE floating-point enabled exceptions are enabled and the FPSCR[FEX] bit is set, a program exception 
occurs no later than the next synchronizing event.
F. Other Vector instructions (if VPU facility implemented)

a. VPU unavailable
b. Trace (if implemented)

G. Other instructions
a. These exceptions are mutually exclusive and have the same priority:

— Program: Trap
— System call (sc)
— Program: Supervisor level instruction
— Program: Illegal Instruction

b. Trace (if implemented)
c. VPU assist (if implemented) 

F. ISI exception
The ISI exception has the lowest priority in this category. It is only recognized when all instructions before the instruction caus-
ing this exception appear to have completed and that instruction is to be executed. The priority of this exception is specified 
for completeness and to ensure that it is not given more favorable treatment. An implementation can treat this exception as 
though it had a lower priority.

1. The exceptions are third in priority after system reset and machine check exceptions. 
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6. Vector Processing Instructions

This chapter lists the vector instruction set in alphabetical order by mnemonic. Note that each entry includes 
the instruction format and a graphical representation of the instruction. All the instructions are 32 bits and a 
description of the instruction fields and pseudocode conventions is also provided. For more information about 
the vector instruction set, see Chapter 4 “Addressing Modes and Instruction Set Summary,” for more informa-
tion about the PowerPC instruction set, see Chapter 8, “Instruction Set,” in PowerPC Microprocessor Family: 
The Programming Environments Manual for 64-bit Microprocessors.

6.1 Instruction Formats

Vector instructions are 4 bytes (32 bits) long and word-aligned. The vector instruction set architecture (ISA) 
has four operands: three source vectors and one result vector. Bits [0–5] always specify the primary opcode 
for vector instructions. Vector arithmetic logic unit (ALU) type instructions specify the primary opcode point 4 
(0b000100). Vector load, store, and stream prefetch instructions use secondary opcode in primary opcode 31 
(0b011111).

Within a vector register, a byte, halfword, or word element, is defined as follows:

• Byte elements: Each element is 8 bits. Therefore, in the pseudocode, n = 8 and there are a total of 16 ele-
ments

• Halfword elements: Each element is 16 bits. Therefore, in the pseudocode, n = 16 and there are a total of 
8 elements

• Word elements: Each element is 32 bits. Therefore, in the pseudocode, n = 32 and there are a total of 4 
elements

See Figure 1-3, for an example of how elements are placed in a vector register.

6.1.1 Instruction Fields 

Table 6-1 describes the instruction fields used in the various instruction formats. 
 

Table 6-1. Instruction Syntax Conventions (Page 1 of 2) 

Field Description

OPCD (0–5) Primary opcode field

rA (11–15) Specifies a general purpose register (GPR) to be used as a source.

rB (16–20) Specifies a GPR to be used as a source.

Rc (21)
Record bit (as defined for vector/SIMD multimedia extension technology).
0 Does not update Condition Register (CR) field 6.
1 Set CR field 6 to control program flow as described in Section 2.3.1 PowerPC Condition Register.

vA (11–15) Specifies a vector register to be used as a source 

vB (16–20) Specifies a vector register to be used as a source.

vC (21–25) Specifies a vector register to be used as a source.

vD (6–10) Specifies a vector register to be used as a destination.

vS (6–10) Specifies a vector register to be used as a source.

SHB (22–25) Specifies a shift amount in bytes. 
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6.1.2 Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode). See Table 6-2 for a 
list of additional pseudocode notation and conventions used throughout this section. 

SIMM (11–15) This immediate field is used to specify a (5 bit) signed integer.

UIMM (11–15) This immediate field is used to specify a (5 bit) unsigned integer.

XO Extended Opcode Field.

Table 6-2. Notation and Conventions (Page 1 of 4) 

Notation/Convention Meaning

← Assignment

¬ NOT logical operator

do i=X to Y by Z Do the following starting at X and iterating to Y by Z

+int 2’s complement integer add

-int 2’s complement integer subtract

+ui Unsigned integer add

-ui Unsigned integer subtract

*ui Unsigned integer multiply

+si Signed integer add

-si Signed integer subtract

*si Signed integer multiply

*sui
Signed integer (first operand) multiplied by unsigned integer (second operand) producing 
signed result

/ Integer divide

+fp Single-precision floating-point add

-fp Single-precision floating-point subtract

*fp Single-precision floating-point multiply

÷fp Single-precision floating-point divide

Ð fp Single-precision floating-point square root

<ui, ≤ui, >ui, ≥ui Unsigned integer comparison relations

<si, ≤si, >si, ≥si Signed integer comparison relations

<fp, ≤fp, >fp, ≥fp Single precision floating point comparison relations

≠ Not equal

=int Integer equal to

=ui Unsigned integer equal to

=si Signed integer equal to

=fp Floating-point equal to

Table 6-1. Instruction Syntax Conventions (Page 2 of 2) 

Field Description
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X >>ui Y Shift X right by Y bits extending Xs vacated bits with zeros

X >>si Y Shift X right by Y bits extending Xs vacated bits with the sign bit of X

X << ui Y Shift X left by Y bits inserting Xs vacated bits with zeros

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same as 010111)

& AND logical operator

 | OR logical operator

⊕, ≡ Exclusive-OR, Equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

0bnnnn A number expressed in binary format.

0xnnnn A number expressed in hexadecimal format.

? Unordered comparison relation

X0 X zeros

X1 X ones

XY X copies of Y

XY Bit Y of X

XY:Z Bits Y through Z, inclusive, of X

LENGTH(x) Length of x, in bits. If x is the word “element”, LENGTH(x) is the length, in bits, of the element 
implied by the instruction mnemonic.

ROTL(x,y) Result of rotating x left by y bits

UItoUImod(X,Y) Chop unsigned integer X to Y-bit unsigned integer

UItoUIsat(X,Y) Result of converting the unsigned-integer x to a y-bit unsigned-integer with unsigned-integer 
saturation

SItoUIsat(X,Y) Result of converting the signed-integer x to a y-bit unsigned-integer with unsigned-integer sat-
uration

SItoSImod(X,Y) Chop integer X- to Y-bit integer

SItoSIsat(X,Y) Result of converting the signed-integer x to a y-bit signed-integer with signed-integer satura-
tion

RndToNearFP32 
The single-precision floating-point number that is nearest in value to the infinitely-precise float-
ing-point intermediate result x (in case of a tie, the even single-precision floating-point value is 
used).

RndToFPInt32Near 
The value x if x is a single-precision floating-point integer; otherwise the single-precision float-
ing-point integer that is nearest in value to x (in case of a tie, the even single-precision floating-
point integer is used).

RndToFPInt32Trunc
The value x if x is a single-precision floating-point integer; otherwise the largest single-preci-
sion floating-point integer that is less than x if x>0, or the smallest single-precision floating-
point integer that is greater than x if x<0

RndToFPInt32Ceil The value x if x is a single-precision floating-point integer; otherwise the smallest single-preci-
sion floating-point integer that is greater than x

RndToFPInt32Floor The value x if x is a single-precision floating-point integer; otherwise the largest single-preci-
sion floating-point integer that is less than x

CnvtFP32ToUI32Sat(x) Result of converting the single-precision floating-point value x to a 32-bit unsigned-integer with 
unsigned-integer saturation

CnvtFP32ToSI32Sat(x) Result of converting the single-precision floating-point value x to a 32-bit signed-integer with 
signed-integer saturation

Table 6-2. Notation and Conventions (Page 2 of 4) 

Notation/Convention Meaning
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CnvtUI32ToFP32(x) Result of converting the 32-bit unsigned-integer x to floating-point single format

CnvtSI32ToFP32(x) Result of converting the 32-bit signed-integer x to floating-point single format

MEM(X,Y) Value at memory location X of size Y bytes

SwapDouble Swap the doublewords in a quadword vector

ZeroExtend(X,Y) Zero-extend X on the left with zeros to produce Y-bit value

SignExtend(X,Y) Sign-extend X on the left with sign bits (that is, with copies of bit [0] of X) to produce Y-bit value

RotateLeft(X,Y) Rotate X left by Y bits

mod(X,Y) Remainder of X/Y

UImaximum(X,Y) Maximum of 2 unsigned integer values, X and Y

SImaximum(X,Y) Maximum of 2 signed integer values, X and Y

FPmaximum(X,Y) Maximum of 2 floating-point values, X and Y

UIminimum(X,Y) Minimum of 2 unsigned integer values, X and Y

SIminimum(X,Y) Minimum of 2 signed integer values, X and Y

FPminimum(X,Y) Minimum of 2 floating-point values, X and Y

FPReciprocalEstimate12(X) 12-bit-accurate floating-point estimate of 1/X

FPReciprocalSQRTEstimate12(X) 12-bit-accurate floating-point estimate of 1/(sqrt(X))

FPLog2Estimate3(X) 3-bit-accurate floating-point estimate of log2(X)

FPPower2Estimate3(X) 3-bit-accurate floating-point estimate of 2**X

CarryOut(X + Y) Carry out of the sum of X and Y

0bnnnn A number expressed in binary format.

0xnnnn A number expressed in hexadecimal format.

(n)x

The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:

• (n)0 means a field of n bits with each bit equal to ‘0’. Thus (5)0 is equivalent to
 0b00000.

• (n)1 means a field of n bits with each bit equal to ‘1’. Thus (5)1 is equivalent to
0b11111.

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field is 0.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer ≥ x

Characterization Reference to the setting of status bits in a standard way that is explained in the text.

CIA 

Current instruction address.
The 64 or 32-bit address of the instruction being described by a sequence of pseudocode. 
Used by relative branches to set the next instruction address (NIA) and by branch instructions 
with LK = 1 to set the Link Register. Does not correspond to any architected register.

Clear Clear the leftmost or rightmost n bits of a register to ‘0’. This operation is used for rotate and 
shift instructions.

Table 6-2. Notation and Conventions (Page 3 of 4) 

Notation/Convention Meaning
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Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be 
used to scale a known nonnegative array index by the width of an element. These operations 
are used for rotate and shift instructions.

Cleared Bits = ‘0’.

Do

Do loop.
• Indenting shows range. 
• “To” or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

DOUBLE(x) Result of converting x from floating-point single-precision format to floating-point double-preci-
sion format.

Extract
Select a field of n bits starting at bit position b in the source register, right or left justify this field 
in the target register, and clear all other bits of the target register to zero. This operation is 
used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits.

GPR(x) General-purpose register x.

if...then...else... Conditional execution, indenting shows range, else is optional.

Insert

Select a field of n bits in the source register, insert this field starting at bit position b of the tar-
get register, and leave other bits of the target register unchanged. (No simplified mnemonic is 
provided for insertion of a field when operating on doublewords; such an insertion requires 
more than one instruction.) This operation is used for rotate and shift instructions. 
Note:  Simplified mnemonics are referred to as extended mnemonics in the architecture spec-
ification.

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere.

MEM(x, y) Contents of y bytes of memory starting at address x.

NIA

Next instruction address, which is the 64 or 32-bit address of the next instruction to be exe-
cuted (the branch destination) after a successful branch. In pseudocode, a successful branch 
is indicated by assigning a value to NIA. For instructions which do not branch, the next instruc-
tion address is CIA + 4. Does not correspond to any architected register.

OEA PowerPC operating environment architecture.

Rotate Rotate the contents of a register right or left n bits without masking. This operation is used for 
rotate and shift instructions.

ROTL[64](x, y) Result of rotating the 64-bit value x left y positions.

ROTL[32](x, y) Result of rotating the 64-bit value x || x left y positions, where x is 32 bits long.

Set Bits are set to ‘1’.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This oper-
ation is used for rotate and shift instructions.

SINGLE(x) Result of converting x from floating-point double-precision format to floating-point single-preci-
sion format.

SPR(x) Special-purpose register x.

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and from one 
execution to another on the same implementation.

UISA PowerPC user instruction set architecture.

VEA PowerPC virtual environment architecture.

Table 6-2. Notation and Conventions (Page 4 of 4) 

Notation/Convention Meaning
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Table 6-3 describes instruction field notation conventions used throughout this chapter.

Precedence rules for pseudocode operators are summarized in Table 6-4.

Operators higher in Table 6-4 are applied before those lower in the table. Operators at the same level in the 
table associate from left to right, from right to left, or not at all, as shown. For example, ‘-’ associates from left 
to right, so that a - b - c = (a - b) - c. Parentheses are used to override the evaluation order implied by 
Table 6-4, or to increase clarity; parenthesized expressions are evaluated before serving as operands.

Table 6-3. Instruction Field Conventions  

PowerPC Architecture Specification: Equivalent in the Vector Processing Technology Specification as:

D d

DS ds

FLM FM

RA, RB, RT, RS rA, rB, rD, rS 

RA, RB, RT, RS A, B, D, S

SI SIMM

U IMM

UI UIMM

VA, VB, VC, VT, VS vA, vB, vC, vD, vS

/, //, /// 0...0 (shaded)

Table 6-4. Precedence Rules  

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication, 
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

∗, ÷ Left to right

+, - Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <U, >U, ? Left to right

&, ⊕, ≡ Left to right

| Left to right

– (range), : (range) None

←, ←iea None
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6.2 Vector Instruction Set

The remainder of this chapter lists and describes the instruction set for the VPU architecture. The instructions 
are listed in alphabetical order by mnemonic. The diagram below shows the format for each instruction 
description page.

Figure 6-1. Format for Instruction Description Page 

vaddsbs vaddsbs
Vector Add Signed Byte Saturate

vaddsbs vD,vA,vB Form: VX

do i=0 to 127 by 8
aop0:8 ← SignExtend((vA)i:i+7,9)
bop0:8 ← SignExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int bop0:8
vDi:i+7 ← SItoSIsat(temp0:8,8)

end

Each element of vaddsbs is a byte.

Each signed-integer element in vA is added to the corresponding signed-integer element
in vB.

If the sum is greater than (27-1) it saturates to (27-1) and if it is less than -27 it saturates to -27.
If saturations occurs, the SAT bit is set.

The signed-integer result is placed into the corresponding element of vD.

Other registers altered:
• Vector status and control register (VSCR):

Affected: SAT

Figure 6-2 shows the usage of the vaddsbs instruction. Each of the sixteen elements in the vectors, vA, vB, and
vD, is 8 bits in length. 

 

04 vD vA vB 768

0 5 6 10 11 15 16 20 21 31

Figure 6-2. vaddsbs— Add Saturating Sixteen Signed Integer Elements  (8-Bit)

+ +++++++++++++++

vA

vB

vD

Instruction name

Instruction syntax and form

Instruction encoding

Pseudocode description 
of instruction operation

Text description of
instruction operation

Figure showing 
instruction usage 
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dss dss
Data Stream Stop (0x7C00 066C) 

dss STRM (A=‘0’) Form: X
dssall STRM (A=‘1’) 

DataStreamPrefetchControl ← “stop” || STRM

Note:  A does not represent rA in this instruction.

If A=‘0’ and a data stream associated with the stream ID specified by STRM exists, this instruction terminates 
prefetching of that data stream. It has no effect if the specified stream does not exist.

If A=‘1’, this instruction terminates prefetching of all existing data streams (the STRM field is ignored.)

In addition, executing a dss instruction ensures that all accesses associated with data stream prefetching 
caused by preceding dst and dstst instructions that specified the same stream ID as that specified by the 
dss instruction (A=‘0’), or by all preceding dst and dstst instructions (A=‘1’), will be in group G1 with respect 
to the memory barrier created by a subsequent sync instruction, see Section 5.1.1 PowerPC Memory Access 
Ordering for more information.

See Section 5.2.1 Software-Directed Prefetch for more information about using the dss instruction.

Other registers altered: 

• None

Simplified mnemonics:

dss STRM equivalent to dss STRM, 0

dssall equivalent to dss 0, 1

For more information about the dss instruction, see Section 5 Cache, Exceptions, and Memory Management 
on page 95.” 

Note:  The Cell Broadband Engine processor treats dss and dsall as no-ops.

31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31
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dst dst
Data Stream Touch (0x7C00 02AC)

dst rA,rB,STRM (T=‘0’) Form: X
dstt rA,rB,STRM (T=‘1’) 

addr0:63 ← (rA)
DataStreamPrefetchControl ← “start” || STRM || T || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to hardware that perfor-
mance will probably be improved if the cache blocks containing the specified data stream are fetched into the 
data cache because the program will probably soon load from the stream. 

The instruction associates the data stream specified by the contents of rA and rB with the stream ID specified 
by STRM. The instruction defines a data stream STRM as starting at an “Effective Address” (rA) and having 
“Count” units of “Size” bytes separated by “Stride” bytes (as specified in rB). The T bit of the instruction indi-
cates whether the data stream is likely to be loaded from fairly frequently in the near future (T =‘0’) or to be 
transient and referenced very few times (T =‘1’).

The dst instruction performs the following functions:

• Defines the characteristics of a data stream STRM by the contents of rA and rB

• Associates the stream with a specified stream ID, STRM (range for STRM is 0-3)

• Indicates that the data in the specified stream STRM starting at the address in rA may soon be loaded

• Indicates whether memory locations within the stream are likely to be needed over a longer period of time 
(T=‘0’) or be treated as transient data (T=‘1’)

• Terminates prefetching from any stream that was previously associated with the specified stream ID, 
STRM

31 T 0 0 STRM rA rB 342 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

Figure 6-3. dst—Data Stream Touch 

0 1 2 3 4 5

StartingAddress

Block Size 

BlockStride 

BlockAddrn   (n=3)

Memory

Stream

Block Block Block Block Block Block
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The specified data stream is encoded for 64-bit as:

• Effective Address: rA, where rA ≠ ‘0’
• Block Size: rB[35-39] if rB[35-39] ≠ ‘0’; otherwise 32
• Block Count: rB[40-47] if rB[40-47] ≠ ‘0’; otherwise 256
• Block Stride: rB[48-63] (signed integer) if rB[48-63] ≠ ‘0’; otherwise 32768 

Other registers altered: 

• None

Simplified mnemonics:

dst rA,rB,STRM equivalent to dst rA,rB,STRM,0

dstt rA,rB,STRM equivalent to dst rA,rB,STRM,1

For more information about the dst instruction, see Section 5 Cache, Exceptions, and Memory Management 
on page 95.”

Note:  The Cell Broadband Engine processor treats dst and dstt as no-ops.

 /// Block Size Block Count Block Stride

32 34 35 39 40 47 48 63
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dstst dstst
Data Stream Touch for Store (0x7C00 02EC)

dstst rA,rB,STRM (T=‘0’) Form: X
dststt rA,rB,STRM (T=‘1’) 

addr0:63 ← (rA)
DataStreamPrefetchControl ← “start” || T || static || (rB) || addr

This instruction initiates a software directed cache prefetch. The instruction is a hint to hardware that perfor-
mance will probably be improved if the cache blocks containing the specified data stream are fetched into the 
data cache because the program will probably soon write to (store into) the stream. 

The instruction associates the data stream specified by the contents of registers rA and rB with the stream ID 
specified by STRM. The instruction defines a data stream STRM as starting at an “Effective Address” (rA) 
and having “Count” units of “Size” bytes separated by “Stride” bytes (as specified in rB). The T bit of the 
instruction indicates whether the data stream is likely to be stored into fairly frequently in the near future 
(T =‘0’), or to be transient and referenced very few times (T =‘1’).

The dstst instruction performs the following functions:

• Defines the characteristics of a data stream STRM by the contents of rA and rB

• Associates the stream with a specified stream ID, STRM (Range for STRM is 0-3)

• Indicates that the data in the specified stream STRM starting at the address in rA may soon be stored in 
to memory

• Indicates whether memory locations within the stream are likely to be stored into fairly frequently in the 
near future (T=‘0’) or be treated as transient data (T=‘1’)

• Terminates prefetching from any stream that was previously associated with the specified stream ID, 
STRM.

31 T 0 0 STRM rA rB 374 0

0 5 6 7 8 9 10 11 15 16 20 21 30 31

Figure 6-4. dstst—Data Stream Touch for Store 
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The specified data stream is encoded for 64-bit as:

• Effective Address: rA, where rA ≠ ‘0’
• Block Size: rB[35-39] if rB[35-39] ≠ ‘0’; otherwise 32
• Block Count: rB[40-47] if rB[40-47] ≠ ‘0’; otherwise 256
• Block Stride: rB[48-63] (signed integer) if rB[48-63] ≠ ‘0’; otherwise 32768 

Other registers altered: 

• None

Simplified mnemonics:

dstst rA,rB,STRM equivalent to dstst rA,rB,STRM,0

dststt rA,rB,STRM equivalent to dstst rA,rB,STRM,1

For more information about the dstst instruction, see Section 5 Cache, Exceptions, and Memory Manage-
ment on page 95.”

Note:  The Cell Broadband Engine processor treats dstst and dststt as no-ops.

 /// Block Size Block Count Block Stride

32 34 35 39 40 47 48 63
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lvebx lvebx 
Load Vector Element Byte Indexed (0x7C00 000E)

lvebx vD,rA,rB Form: X

if rA=0 then b ← 0
else         b ← (rA)
EA ← b + (rB)
eb ← EA60:63 
vD ← undefined
(vD)eb×8 :(eb×8)+7 ← MEM(EA,1)

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB. Let m be the value of bits [60–63] of EA, where m is the byte offset of the byte in 
its aligned quadword in memory.

The byte addressed by EA is loaded into byte m of register vD. The remaining bytes in vD are set to unde-
fined values.

Other registers altered: 

• None

31 vD rA rB 7 0
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Figure 6-5. Effects of Example Load/Store Instructions 
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0x0000_0010

0x0000_0020

0x0000_0030

0x0000_0040

0x0000_0050

0x0000_0060

0x0000_0070

0x0000_0080

0x0000_0090

0x0000_00A0

0x0000_00B0

Byte at x1E

Halfword at x2A

Word at x54

Quadword at A0

vR

vR

vR

vR

Load or Store:

Memory

x  x  x  x  x  x  x  x x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x

x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x x  x  x  x  x  x  x  x

x  x

Note:  In vector registers, x means boundedly undefined after a load and don’t care after a store. In memory, x means don’t care 
after a load, and leave at current value after a store.
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lvehx lvehx 
Load Vector Element Halfword Indexed (0x7C00 004E)

lvehx vD,rA,rB Form: X 

if rA=0 then b ← 0
else         b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFF_FFFF_FFFE 
eb ← EA60:63
vD ← undefined
(vD)(eb×8):(eb×8) + 15 ← MEM(EA,2)

Let the effective address EA be the result of ANDing the sum of the contents of register rA, or the value ‘0’ if 
rA is equal to ‘0’, and the contents of register rB with the value 0xFFFF_FFFF_FFFF_FFFE. Let m be the 
value of bits [60-62] of EA, where m is the halfword offset of the halfword in its aligned quadword in memory.

The halfword addressed by EA is loaded into halfword m of register vD. The remaining halfwords in register 
vD are set to undefined values. Figure 6-5 shows this instruction.

Other registers altered: 

• None

31 vD rA rB 39 0
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lvewx lvewx 
Load Vector Element Word Indexed (0x7C00 008E)

lvewx vD,rA,rB Form: X 

if rA=0 then b ← 0
else         b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFF_FFFF_FFFC 
eb ← EA60:63
vD ← undefined
(vD)eb×8:(eb×8)+31]← MEM(EA,4)

Let the effective address EA be the result of ANDing the sum of the contents of register rA, or the value ‘0’ if 
rA is equal to ‘0’, and the contents of register rB with the value 0xFFFF_FFFF_FFFF_FFFC. Let m be the 
value of bits 60:61 of EA, where m is the word offset of the word in its aligned quadword in memory.

The word addressed by EA is loaded into word m of register vD. The remaining words in register vD are set 
to undefined values. Figure 6-5 shows this instruction.

Other registers altered: 

• None 

31 vD rA rB 71 0
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lvlx lvlx 
Load Vector Left Indexed (0x7C00 040E)

lvlx vD,rA,rB Form X 

if rA=0 then base ← 0
else         base ← (rA)
EA ← (base + (rB))
eb ← EA60:63 
(vD) ← MEM(EA,16-eb) || (eb×8) (0)

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB.

Let eb be the value of bits [60-63] of EA.

The 16-eb bytes in memory addressed by EA are loaded into the left-most 16-eb byte elements of register 
vD. The right-most eb byte elements of register vD are set to 0.

Other registers altered:

• None

Note:  lvlx is supported only on the Cell Broadband Engine processor and is not portable to other implemen-
tations of the vector/SIMD multimedia extension technology.

31 vD rA rB 519 0

0 5 6 10 11 15 16 20 21 30 31
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lvlxl lvlxl
Load Vector Left Indexed Last (0x7C00 060E)

lvlxl vD,rA,rB Form: X 

if rA=0 then base ← 0
else         base ← (rA)
EA ← (base + (rB))
eb ← EA60:63
(vD) ← MEM(EA,16-eb) || (eb×8) (0)
mark_cache_block_as_not_likely_to_be_needed_again_anytime_soon(EA)

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB.

Let eb be the value of bits [60-63] of EA.

The (16-eb) bytes in memory addressed by EA are loaded into the left-most (16-eb) byte elements of register 
vD. The right-most eb byte elements of register vD are set to ‘0’.

This instruction provides a hint that the quadword in memory accessed by EA will probably not be needed 
again by the program in the near future.

Other registers altered:

• None

Note:  lvlxl is supported only on the Cell Broadband Engine processor and is not portable to other implemen-
tations of the vector/SIMD multimedia extension technology.

31 vD rA rB 775 0
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lvrx lvrx 
Load Vector Right Indexed (0x7C00 044E)

lvrx vD,rA,rB Form: X 

if rA=0 then base ← 0
else         base ← (rA)
EA ← (base + (rB))
eb ← EA[60:63]
(vD) ← (16-eb×8) (0) || MEM(EA-eb,eb)

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB.

Let eb be the value of bits [60-63] of EA.

If eb is not equal to ‘0’ (for example, EA is not quadword-aligned), then eb bytes in memory addressed by 
(EA-eb) are loaded into the right-most eb byte elements of vD and the left-most (16-eb) byte elements of 
register vD are set to ‘0’.

If eb is equal to ‘0’ (for example, EA is quadword-aligned), then the contents of register vD are set to ‘0’.

Other registers altered:

• None

Note:  lvrx is supported only on the Cell Broadband Engine processor and is not portable to other implemen-
tations of the vector/SIMD multimedia extension technology.

31 vD rA rB 551 0

0 5 6 10 11 15 16 20 21 30 31
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lvrxl lvrxl
Load Vector Right Indexed Last (0x7C00 064E)

lvrxl vD,rA,rB Form: X 

if rA=0 then base ← 0
else         base ← (rA)
EA ← (base + (rB))
eb ← EA60:63 
(vD) ← (16-eb×8)(0) || MEM(EA-eb,eb)
mark_cache_block_as_not_likely_to_be_needed_again_anytime_soon(EA)

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB.

Let eb be the value of bits [60-63] of EA.

If eb is not equal to ‘0’ (for example, EA is not quadword-aligned), then eb bytes in memory addressed by 
(EA-eb) are loaded into the right-most eb byte elements of vD and the left-most (16-eb) byte elements of 
register vD are set to ‘0’.

If eb is equal to ‘0’ (for example, EA is quadword-aligned), then the contents of register vD are set to ‘0’.

This instruction provides a hint that the quadword in memory accessed by EA will probably not be needed 
again by the program in the near future.

Other registers altered:

• None

Note:  lvrxl is supported only on the Cell Broadband Engine processor and is not portable to other implemen-
tations of the vector/SIMD multimedia extension technology. 

31 vD rA rB 807 0
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lvsl lvsl
Load Vector for Shift Left (0x7C00 000C)

lvsl vD,rA,rB Form: X 

if rA = 0 then b ← 0
    else b ← (rA)
addr[0:63] ← b + (rB)
sh ← addr[60:63]

if sh = 0x0 then (vD) ← 0x000102030405060708090A0B0C0D0E0F
if sh = 0x1 then (vD) ← 0x0102030405060708090A0B0C0D0E0F10
if sh = 0x2 then (vD) ← 0x02030405060708090A0B0C0D0E0F1011
if sh = 0x3 then (vD) ← 0x030405060708090A0B0C0D0E0F101112
if sh = 0x4 then (vD) ← 0x0405060708090A0B0C0D0E0F10111213
if sh = 0x5 then (vD) ← 0x05060708090A0B0C0D0E0F1011121314
if sh = 0x6 then (vD) ← 0x060708090A0B0C0D0E0F101112131415
if sh = 0x7 then (vD) ← 0x0708090A0B0C0D0E0F10111213141516
if sh = 0x8 then (vD) ← 0x08090A0B0C0D0E0F1011121314151617
if sh = 0x9 then (vD) ← 0x090A0B0C0D0E0F101112131415161718
if sh = 0xA then (vD) ← 0x0A0B0C0D0E0F10111213141516171819
if sh = 0xB then (vD) ← 0x0B0C0D0E0F101112131415161718191A
if sh = 0xC then (vD) ← 0x0C0D0E0F101112131415161718191A1B
if sh = 0xD then (vD) ← 0x0D0E0F101112131415161718191A1B1C
if sh = 0xE then (vD) ← 0x0E0F101112131415161718191A1B1C1D
if sh = 0xF then (vD) ← 0x0F101112131415161718191A1B1C1D1E

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB. Let sh be the value of bits [60-63] of the effective address (EA).

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes sh:sh+15 of X are placed into 
register vD. Figure 6-6 shows how this instruction works.

Other registers altered: 

• None

31 vD rA rB 6 0
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Figure 6-6. Load Vector for Shift Left 
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The above lvsl instruction followed by a Vector Permute (vperm) would do a simulated alignment of a four-
element floating-point vector misaligned on quadword boundary at address 0x0....C.

See the description of the lvsr instruction for suggested uses of the lvsl instruction.

Figure 6-7. Instruction vperm Used in Aligning Data 
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lvsr lvsr
Load Vector for Shift Right (0x7C00 004C)

lvsr vD,rA,rB Form: X

if rA = 0 then b ← 0
else           b ← (rA)
EA ← b + (rB)
sh ← EA[60:63]
if sh=0x0 then (vD) ← 0x101112131415161718191A1B1C1D1E1F
if sh=0x1 then (vD) ← 0x0F101112131415161718191A1B1C1D1E
if sh=0x2 then (vD) ← 0x0E0F101112131415161718191A1B1C1D
if sh=0x3 then (vD) ← 0x0D0E0F101112131415161718191A1B1C
if sh=0x4 then (vD) ← 0x0C0D0E0F101112131415161718191A1B
if sh=0x5 then (vD) ← 0x0B0C0D0E0F101112131415161718191A
if sh=0x6 then (vD) ← 0x0A0B0C0D0E0F10111213141516171819
if sh=0x7 then (vD) ← 0x090A0B0C0D0E0F101112131415161718
if sh=0x8 then (vD) ← 0x08090A0B0C0D0E0F1011121314151617
if sh=0x9 then (vD) ← 0x0708090A0B0C0D0E0F10111213141516
if sh=0xA then (vD) ← 0x060708090A0B0C0D0E0F101112131415
if sh=0xB then (vD) ← 0x05060708090A0B0C0D0E0F1011121314
if sh=0xC then (vD) ← 0x0405060708090A0B0C0D0E0F10111213
if sh=0xD then (vD) ← 0x030405060708090A0B0C0D0E0F101112
if sh=0xE then (vD) ← 0x02030405060708090A0B0C0D0E0F1011
if sh=0xF then (vD) ← 0x0102030405060708090A0B0C0D0E0F10

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB. Let sh be the value of bits [60-63] of EA.

Let X be the 32-byte value 0x00 || 0x01 || 0x02 || ... || 0x1E || 0x1F. Bytes (16-sh):(31-sh) of X are placed into 
register vD.

Note:  lvsl and lvsr can be used to create the permute control vector to be used by a subsequent vperm 
instruction. Let X and Y be the contents of vA and vB specified by the vperm. The control vector created by 
lvsl causes the vperm to select the high-order 16 bytes of the result of shifting the 32-byte value X || Y left by 
sh bytes. The control vector created by vsr causes the vperm to select the low-order 16 bytes of the result of 
shifting X || Y right by sh bytes.

These instructions can also be used to rotate or shift the contents of a vector register by sh bytes. For 
rotating, the vector register to be rotated should be specified as both vA and vB for vperm. For shifting left, 
the vB register for vperm should contain all zeros and vA should contain the value to be shifted, and vice 
versa for shifting right. Figure 6-6 on page 127 shows a similar instruction only in that figure the shift is to the 
left.

Other registers altered: 

• None

31 vD rA rB 38 0
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lvx lvx
Load Vector Indexed (0x7C00 00CE)

lvx vD,rA,rB Form: X 

if rA=0 then b ← 0
else         b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFF_FFFF_FFF0
vD ← MEM(EA,16)

Let the effective address EA be the result of ANDing the sum of the contents of register rA, or the value ‘0’ if 
rA is equal to ‘0’, and the contents of register rB with the value 0xFFFF_FFFF_FFFF_FFF0.

The quadword in memory addressed by EA is loaded into register vD.

Other registers altered: 

• None

31 vD rA rB 103 0
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lvxl lvxl
Load Vector Indexed Last (0x7C00 02CE)

lvxl vD,rA,rB Form: X 

if rA=0 then b ← 0
else         b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFF_FFFF_FFF0
vD ← MEM(EA,16)
mark_cache_block_as_not_likely_to_be_needed_again_anytime_soon(EA) 

Let the effective address EA be the result of ANDing the sum of the contents of register rA, or the value 0 if rA 
is equal to 0, and the contents of register rB with the value 0xFFFF_FFFF_FFFF_FFF0.

The quadword addressed by EA is loaded into register vD.

lvxl provides a hint that the quadword addressed by EA will probably not be needed again by the program in 
the near future.

Note that on some implementations, the hint provided by the lvxl instruction and the corresponding hint 
provided by the Store Vector Indexed Last (stvxl) instruction (see Section 5.2.1.2 Transient Streams (dstt)) 
are applied to the entire cache block containing the specified quadword. On such implementations, the effect 
of the hint may be to cause that cache block to be considered a likely candidate for reuse when space is 
needed in the cache for a new block. Thus, on such implementations, the hint should be used with caution if 
the cache block containing the quadword also contains data that may be needed by the program in the near 
future. Also, the hint may be used before the last reference in a sequence of references to the quadword if the 
subsequent references are likely to occur sufficiently soon that the cache block containing the quadword is 
not likely to be displaced from the cache before the last reference. 

Other registers altered: 

• None

31 vD rA rB 359 0
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mfvscr mfvscr
Move from Vector Status and Control Register (0x1000 0604)

mfvscr vD Form: VX

vD ← 96(0) || (VSCR)

The contents of the Vector Status and Control Register (VSCR) are placed into register vD.

Note:  The programmer should assume that mtvscr and mfvscr take substantially longer to execute than 
other VX instructions.

Other registers altered: 

• None

04 vD 0 0 0 0 0 0 0 0 0 0 1540
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mtvscr mtvscr
Move to Vector Status and Control Register (0x1000 0C44)

mtvscr vB Form: VX

VSCR ← (vB)96:127

The contents of register vB are placed into the VSCR.

Other registers altered: 

• None

04 0 0 0 0 0 0 0 0 0 0 vB 1604
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stvebx stvebx
Store Vector Element Byte Indexed (0x7C00 010E)

stvebx vS,rA,rB Form: X 

if rA=0 then b ← 0
else         b ← (rA)
EA ← b + (rB)
eb ← EA60:63 
then MEM(EA,1) ← (vS)eb × 8:(eb × 8)+7

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB. Let m be the value of bits [60:63] of EA, where m is the byte offset of the byte in its 
aligned quadword in memory.

Byte m of register vS is stored into the byte in memory addressed by EA. Figure 6-5 shows how a store 
instruction is performed for a vector register.

Other registers altered: 

• None

31 vS rA rB 135 0
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stvehx stvehx
Store Vector Element Halfword Indexed (0x7C00 014E)

stvehx vS,rA,rB Form: X

if rA=0 then b ← 0
else         b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFF_FFFF_FFFE
eb ← EA0:63 
MEM(EA,2) ← vS[eb × 8:(eb × 8)+15]

Let the effective address EA be the result of ANDing the sum of the contents of register rA, or the value ‘0’ if 
rA is equal to ‘0’, and the contents of register rB with 0xFFFF_FFFF_FFFF_FFFE. Let m be the value of bits 
[60:62] of EA, where m is the halfword offset of the halfword in its aligned quadword in memory.

Halfword m of register vS is stored into the halfword addressed by EA. Figure 6-5 shows how a store instruc-
tion is performed for a vector register.

Other registers altered: 

• None

31 vS rA rB 167 0
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stvewx stvewx
Store Vector Element Word Indexed (0x7C00 018E)

stvewx vS,rA,rB Form: X

if rA=0 then b ← 0
else         b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFF_FFFF_FFFC
eb ← EA60:63
MEM(EA,4) ← (vS)eb × 8:(eb × 8)+31

Let the effective address EA be the result of ANDing the sum of the contents of register rA, or the value ‘0’ if 
rA is equal to ‘0’, and the contents of register rB with 0xFFFF_FFFF_FFFF_FFFC. Let m be the value of bits 
[60:61] of EA, where m is the word offset of the word in its aligned quadword in memory.

Word m of register vS is stored into the word addressed by EA. Figure 6-5 shows how a store instruction is 
performed for a vector register.

Other registers altered: 

• None 

31 vS rA rB 199 0
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stvlx stvlx
Store Vector Left Indexed (0x7C00 050E)

stvlx vS,rA,rB Form X 

if rA=0 then b ← 0
else         b ← (rA)
EA ← b + (rB)
eb ← EA60:63
MEM(EA,16-eb) ← (vS)0:(127-eb×8)

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB.

Let eb be the value of bits [60-63] of EA.

The contents of the left-most 16-eb byte elements of register vS are stored into the 16-eb bytes of memory 
addressed by EA.

Other registers altered: 

• None

Note:  stvlx is supported only on the Cell Broadband Engine processor and is not portable to other imple-
mentations of the vector/SIMD multimedia extension technology.

31 vS rA rB 647 0
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stvlxl stvlxl
Store Vector Left Indexed Last (0x7C00 070E)

stvlxl vS,rA,rB Form X 

if rA=0 then b ← 0
else         b ← (rA)
EA ← b + (rB)
eb ← EA60:63
MEM(EA,16-eb) ← (vS)0:(127-eb×8)
mark_cache_block_as_not_likely_to_be_needed_again_anytime_soon(EA)

Let the effective address EA be the sum of the contents of register rA, or the value 0 if rA is equal to 0, and 
the contents of register rB.

Let eb be the value of bits [60-63] of EA.

The contents of the left-most 16-eb byte elements of register vS are stored into the 16-eb bytes of memory 
addressed by EA.

This instruction provides a hint that the quadword in memory accessed by EA will probably not be needed 
again by the program in the near future.

Other registers altered: 

• None

Note:  stvlxl is supported only on the Cell Broadband Engine processor and is not portable to other imple-
mentations of the vector/SIMD multimedia extension technology.

31 vS rA rB 903 0
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stvrx stvrx
Store Vector Right Indexed (0x7C00 054E)

stvrx vS,rA,rB Form X 

if rA=0 then b ← 0
else         b ← (rA)
EA ← b + (rB)
eb ← EA60:63
if eb!=0 then do
   MEM(EA-eb,eb) ← (vS)(128-eb×8):127 

Let the effective address EA be the sum of the contents of register rA, or the value 0 if rA is equal to 0, and 
the contents of register rB.

Let eb be the value of bits [60-63] of EA.

If eb is not equal to ‘0’ (for example, EA is not quadword-aligned), then the contents of the right-most eb byte 
elements of register vS are stored into the eb bytes of memory addressed by (EA-eb).

If eb is equal to ‘0’ (for example, EA is quadword-aligned), then memory is not altered by this instruction.

Other registers altered: 

• None

Note:  stvrx is supported only on the Cell Broadband Engine processor and is not portable to other imple-
mentations of the vector/SIMD multimedia extension technology.

31 vS rA rB 679 0
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stvrxl stvrxl
Store Vector Right Indexed Last (0x7C00 074E)

stvrxl vS,rA,rB Form X 

if rA=0 then b ← 0
else b ← (rA)
EA ← b + (rB)
eb ← EA60:63
if eb!=0 then do
   MEM(EA-eb,eb) ← (vS)(128-eb×8):127
   mark_cache_block_as_not_likely_to_be_needed_again_anytime_soon(EA)

Let the effective address EA be the sum of the contents of register rA, or the value ‘0’ if rA is equal to ‘0’, and 
the contents of register rB.

Let eb be the value of bits [60-63] of EA.

If eb is not equal to ‘0’ (for example, EA is not quadword-aligned), then the contents of the right-most eb byte 
elements of register vS are stored into the eb bytes of memory addressed by (EA-eb).

If eb is equal to ‘0’ (for example, EA is quadword-aligned), then memory is not altered by this instruction.

This instruction provides a hint that the quadword in memory accessed by EA will probably not be needed 
again by the program in the near future.

Other registers altered: 

• None

Note:  stvrxl is supported only on the Cell Broadband Engine processor and is not portable to other imple-
mentations of the vector/SIMD multimedia extension technology.

31 vS rA rB 935 0
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stvx stvx
Store Vector Indexed (0x7C00 01CE) 

stvx vS,rA,rB Form: X 

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFF_FFFF_FFF0
MEM(EA,16) ← (vS)

Let the effective address EA be the result of ANDing the sum of the contents of register rA, or the value ‘0’ if 
rA is equal to ‘0’, and the contents of register rB with 0xFFFF_FFFF_FFFF_FFF0.

The contents of register vS are stored into the quadword addressed by EA. Figure 6-5 shows how a store 
instruction is performed for a vector register.

Other registers altered: 

• None

31 vS rA rB 231 0
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stvxl stvxl
Store Vector Indexed Last (0x7C00 03CE)

stvxl vS,rA,rB Form: X 

if rA=0 then b ← 0
else b ← (rA)
EA ← (b + (rB)) & 0xFFFF_FFFF_FFFF_FFF0
MEM(EA,16) ← (vS)
mark_cache_block_as_not_likely_to_be_needed_again_anytime_soon(EA) 

Let the effective address EA be the result of ANDing the sum of the contents of register rA, or the value 0 if rA 
is equal to ‘0’, and the contents of register rB with 0xFFFF_FFFF_FFFF_FFF0.

The contents of register vS are stored into the quadword addressed by EA. The stvxl instruction provides a 
hint that the quadword addressed by EA will probably not be needed again by the program in the near future.

Note that on some implementations, the hint provided by the stvxl instruction (see Section 5.2.2 Prioritizing 
Cache Block Replacement) is applied to the entire cache block containing the specified quadword. On such 
implementations, the effect of the hint may be to cause that cache block to be considered a likely candidate 
for reuse when space is needed in the cache for a new block. Thus, on such implementations, the hint should 
be used with caution if the cache block containing the quadword also contains data that may be needed by 
the program in the near future. Also, the hint may be used before the last reference in a sequence of refer-
ences to the quadword if the subsequent references are likely to occur sufficiently soon that the cache block 
containing the quadword is not likely to be displaced from the cache before the last reference. Figure 6-5 
shows how a store instruction is performed on the vector registers.

Other registers altered: 

• None

31 vS rA rB 487 0
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vaddcuw vaddcuw
Vector Add Carryout Unsigned Word (0x1000 0180)

vaddcuw vD,vA,vB Form: VX 

do i=0 to 127 by 32
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32
(vD)i:i+31 ← ZeroExtend(temp0,32)

end

Each unsigned-integer word element i register n vA is added to the corresponding unsigned-integer word 
element in vB. The carry out of bit [0] of the 32-bit sum is zero-extended to 32 bits and placed into the corre-
sponding word element of register vD.

Other registers altered: 

• None

Figure 6-8 shows the usage of the vaddcuw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 384

0 5 6 10 11 15 16 20 21 31

Figure 6-8. vaddcuw—Determine Carries of Four Unsigned Integer Adds  (32-Bit)
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vaddfp vaddfp
Vector Add Floating Point (0x1000 000A)

vaddfp vD,vA,vB Form: VX 

do i = 0 to 127 by 32
(vD)i:i+31 ← RndToNearFP32((vA)i:i+31 +fp (vB)i:i+31)

end

Each single-precision floating-point element in register vA is added to the corresponding single-precision 
floating-point element in register vB. Each intermediate result is rounded and placed in the corresponding 
single-precision floating-point element in register vD.

If VSCR[NJ] =‘1’, every denormalized operand element is truncated to a ‘0’ of the same sign before the oper-
ation is carried out, and each denormalized result element truncates to a ‘0’ of the same sign.

Other registers altered: 

• None

Figure 6-9 shows the usage of the vaddfp instruction. Each of the four elements in the registers vA, vB, and 
vD is 32 bits in length.

04 vD vA vB 10

0 5 6 10 11 15 16 20 21 31

Figure 6-9. vaddfp—Add Four Floating-Point Elements  (32-Bit)
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vaddsbs vaddsbs 
Vector Add Signed Byte Saturate (0x1000 0300)

vaddsbs vD,vA,vB Form: VX 

do i=0 to 127 by 8
aop0:8 ← SignExtend((vA)i:i+7,9)
bop0:8 ← SignExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int bop0:8
(vD)i:i+7 ← SItoSIsat(temp0:8,8)

end

Each signed-integer byte element in register vA is added to the corresponding signed-integer byte element in 
register vB. If the intermediate result is greater than 27-1, it saturates to 27-1. If the intermediate result is less 
than -27, it saturates to -27. If saturation occurs, the saturation (SAT) bit is set. The signed-integer result is 
placed into the corresponding element of register vD.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-10 shows the usage of the vaddsbs instruction. Each of the sixteen elements in the registers vA, 
vB, and vD is 8 bits in length.

04 vD vA vB 768

0 5 6 10 11 15 16 20 21 31

Figure 6-10. vaddsbs — Add Saturating Sixteen Signed Integer Elements  (8-Bit)
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vaddshs vaddshs 
Vector Add Signed Halfword Saturate (0x1000 0340)

vaddshs vD,vA,vB Form: VX

do i=0 to 127 by 16
aop0:16 ← SignExtend((vA)i:i+15,16)
bop0:16 ← SignExtend((vB)i:i+15,16)
temp0:16 ← aop0:16 +int bop0:16
(vD)i:i+15 ← SItoSIsat(temp0:16,16)

end

Each element of vaddshs is a halfword.

Each signed-integer halfword element in register vA is added to the corresponding signed-integer halfword 
element in register vB. If the intermediate result is greater than 215-1, it saturates to 215-1. If the intermediate 
result is less than -215, it saturates to -215. If saturation occurs, the SAT bit is set. The result is placed into the 
corresponding halfword element of register vD.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-11 shows the usage of the vaddshs instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 832

0 5 6 10 11 15 16 20 21 31

Figure 6-11. vaddshs — Add Saturating Eight Signed Integer Elements  (16-Bit)
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vaddsws vaddsws 
Vector Add Signed Word Saturate (0x1000 0380)

vaddsws vD,vA,vB Form: VX 

do i=0 to 127 by 32
aop0:32 ← SignExtend((vA)i:i+31,33)
bop0:32 ← SignExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32
(vD)i:i+31 ← SItoSIsat(temp0:32,32)

end

Each element of vaddsws is a word.

Each signed-integer word element in register vA is added to the corresponding signed-integer word element 
in register vB. If the intermediate result is greater than 231-1, it saturates to 231-1. If the intermediate result is 
less than -231, it saturates to -231. If saturation occurs, the SAT bit is set. The signed-integer result is placed 
into the corresponding word element of register vD.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-12 shows the usage of the vaddsws instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.
 

04 vD vA vB 896

0 5 6 10 11 15 16 20 21 31

Figure 6-12. vaddsws—Add Saturating Four Signed Integer Elements  (32-Bit)
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vaddubm vaddubm 
Vector Add Unsigned Byte Modulo (0x1000 0000)

vaddubm vD,vA,vB Form: VX 

do i=0 to 127 by 8
(vD)i:i+7 ← (vA)i:i+7 +int (vB)i:i+7

end

Each integer byte element in register vA is modulo added to the corresponding integer byte element in 
register vB. The integer result is placed into the corresponding byte element of register vD.

Note:  The vaddubm instruction can be used for unsigned or signed integers.

Other registers altered: 

• None

Figure 6-13 shows the vaddubm instruction usage. Each of the sixteen elements in the registers vA, vB, and 
vD is 8 bits in length.

04 vD vA vB 0

0 5 6 10 11 15 16 20 21 31

Figure 6-13. vaddubm—Add Sixteen Integer Elements  (8-Bit)
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vaddubs vaddubs 
Vector Add Unsigned Byte Saturate (0x1000 0200)

vaddubs vD,vA,vB Form: VX 

do i=0 to 127 by 8
aop0:8 ← ZeroExtend((vA)i:i+7,9)
bop0:8 ← ZeroExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int bop0:8
(vD)i:i+7 ← UItoUIsat(temp0:8,8)

end

Each unsigned-integer byte element in register vA is added to the corresponding unsigned-integer byte 
element in register vB. If the intermediate result is greater than 28-1, it saturates to 28-1. If saturation occurs, 
the SAT bit is set. The unsigned-integer result is placed into the corresponding byte element of register vD.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-14 shows the usage of the vaddubs instruction. Each of the sixteen elements in the registers vA, 
vB, and vD is 8 bits in length.

04 vD vA vB 512

0 5 6 10 11 15 16 20 21 31

Figure 6-14. vaddubs—Add Saturating Sixteen Unsigned Integer Elements  (8-Bit)
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vadduhm vadduhm 
Vector Add Unsigned Halfword Modulo (0x1000 0040)

vadduhm vD,vA,vB Form: VX 

do i=0 to 127 by 16
(vD)i:i+15← (vA)i:i+15 +int (vB)i:i+15

end

Each integer halfword element in register vA is added to the corresponding integer halfword element in 
register vB. The integer result is placed into the corresponding halfword element of register vD.

Note:  The vadduhm instruction can be used for unsigned or signed integers.

Other registers altered: 

• None

Figure 6-15 shows the usage of the vadduhm instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 64

0 5 6 10 11 15 16 20 21 31

Figure 6-15. vadduhm—Add Eight Integer Elements  (16-Bit)
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vadduhs vadduhs 
Vector Add Unsigned Halfword Saturate (0x1000 0240)

vadduhs vD,vA,vB Form: VX 

do i=0 to 127 by 16
aop0:16 ← ZeroExtend((vA)i:i+15,17)
bop0:16 ← ZeroExtend((vB)i:i+15,17)
temp0:16 ← aop0:16 +int bop0:16
(vD)i:i+15 ← UItoUIsat(temp0:16,16)

end

Each unsigned-integer halfword element in register vA is added to the corresponding unsigned-integer half-
word element in register vB. If the intermediate result is greater than 216-1, it saturates to 216-1. If saturation 
occurs, the SAT bit is set. The unsigned-integer result is placed into the corresponding halfword element of 
register vD.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-16 shows the usage of the vadduhs instruction. Each of the eight elements in the registers vA, vB, 
and vD are 16 bits in length.

04 vD vA vB 576

0 5 6 10 11 15 16 20 21 31

Figure 6-16. vadduhs—Add Saturating Eight Unsigned Integer Elements  (16-Bit)
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vadduwm vadduwm 
Vector Add Unsigned Word Modulo (0x1000 0080)

vadduwm vD,vA,vB Form: VX 

do i=0 to 127 by 32
(vD)i:i+31← (vA)i:i+31 +int (vB)i:i+31

end

Each integer word element in register vA is modulo added to the corresponding integer word element in 
register vB. The integer result is placed into the corresponding word element of register vD.

Note:  The vadduwm instruction can be used for unsigned or signed integers.

Other registers altered: 

• None

Figure 6-17 shows the usage of the vadduwm instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 128

0 5 6 10 11 15 16 20 21 31

Figure 6-17. vadduwm—Add Four Integer Elements  (32-Bit)
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vadduws vadduws 
Vector Add Unsigned Word Saturate (0x1000 0280)

vadduws vD,vA,vB Form: VX 

do i=0 to 127 by 3
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32
(vD)i:i+31 ← UItoUIsat(temp0:32,32)

end

Each unsigned-integer word element in register vA is added to the corresponding unsigned-integer word 
element in register vB. If the intermediate result is greater than 232-1, it saturates to 232-1. If saturation 
occurs, the SAT bit is set. The unsigned-integer result is placed into the corresponding word element in 
register vD.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-18 shows the usage of the vadduws instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 640

0 5 6 10 11 15 16 20 21 31

Figure 6-18. vadduws—Add Saturating Four Unsigned Integer Elements  (32-Bit)
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vand vand 
Vector Logical AND (0x1000 0404)

vand vD,vA,vB Form: VX 

(vD) ← (vA) & (vB)

The contents of register vA are bitwise ANDed with the contents of register vB and the result is placed into 
register vD.

Other registers altered: 

• None

Figure 6-19 shows usage of the vand instruction.

04 vD vA vB 1028

0 5 6 10 11 15 16 20 21 31

Figure 6-19. vand—Logical Bitwise AND  
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vandc vandc
Vector Logical AND with Complement (0x1000 0444)

vandc vD,vA,vB Form: VX 

(vD) ← (vA) & ¬(vB)

The contents of register vA are ANDed with the one’s complement of the contents of register vB and the 
result is placed into register vD.

Other registers altered: 

• None

Figure 6-20 shows usage of the vandc instruction.

04 vD vA vB 1092

0 5 6 10 11 15 16 20 21 31

Figure 6-20. vandc—Logical Bitwise AND with Complement 
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vavgsb vavgsb
Vector Average Signed Byte (0x1000 0502)

vavgsb vD,vA,vB Form: VX 

do i=0 to 127 by 8
aop0:8 ← SignExtend((vA)i:i+7,9)
bop0:8 ← SignExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int bop0:8 +int 1
(vD)i:i+7 ← temp0:7

end

Each signed-integer byte element in register vA is added to the corresponding signed-integer byte element in 
register vB, producing a 9-bit signed-integer sum. The sum is incremented by ‘1’. The high-order 8 bits of the 
result are placed into the corresponding byte element in register vD.

Other registers altered: 

• None

Figure 6-21 shows the usage of the vavgsb instruction. Each of the sixteen elements in the registers vA, vB, 
and vD is 8 bits in length.

04 vD vA vB 1282

0 5 6 10 11 15 16 20 21 31

Figure 6-21. vavgsb — Average Sixteen Signed Integer Elements  (8-Bit)
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vavgsh vavgsh
Vector Average Signed Halfword (0x1000 0542)

vavgsh vD,vA,vB Form: VX 

do i=0 to 127 by 16
aop0:16 ← SignExtend((vA)i:i+15,17)
bop0:16 ← SignExtend((vB)i:i+15,17)
temp0:16 ← aop0:15 +int bop0:15 +int 1
(vD)i:i+15 ← temp0:15

end

Each signed-integer halfword element in register vA is added to the corresponding signed-integer halfword 
element in register vB, producing an 17-bit signed-integer sum. The sum is incremented by ‘1’. The high-
order 16 bits of the result are placed into the corresponding halfword element in register vD.

Other registers altered: 

• None

Figure 6-22 shows the usage of the vavgsh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 1346

0 5 6 10 11 15 16 20 21 31

Figure 6-22. vavgsh—Average Eight Signed Integer Elements  (16-bits)
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vavgsw vavgsw
Vector Average Signed Word (0x1000 0582) 

vavgsw vD,vA,vB Form: VX 

do i=0 to 127 by 32
aop0:32 ← SignExtend((vA)i:i+31,33)
bop0:32 ← SignExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32 +int 1
(vD)i:i+31 ← temp0:31

end

Each signed-integer word element in register vA is added to the corresponding signed-integer word element 
in register vB, producing a 33-bit signed-integer sum. The sum is incremented by ‘1’. The high-order 32 bits of 
the result are placed into the corresponding word element of register vD.

Other registers altered: 

• None

Figure 6-23 shows the usage of the vavgsw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 1410

0 5 6 10 11 15 16 20 21 31

Figure 6-23. vavgsw — Average Four Signed Integer Elements  (32-Bit)
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vavgub vavgub
Vector Average Unsigned Byte (0x1000 0402)

vavgub vD,vA,vB Form: VX 

do i=0 to 127 by 8
aop0:8 ← ZeroExtend((vA)i:i+7,9)
bop0:n ← ZeroExtend((vB)i:i+71,9)
temp0:n ← aop0:8 +int bop0:8 +int 1
(vD)i:i+7 ← temp0:7

end

Each unsigned-integer byte element in register vA is added to the corresponding unsigned-integer byte 
element in register vB, producing a 9-bit unsigned-integer sum. The sum is incremented by ‘1’. The high-
order 8 bits of the result are placed into the corresponding element of register vD.

Other registers altered: 

• None

Figure 6-24 shows the usage of the vavgub instruction. Each of the sixteen elements in the registers vA, vB, 
and vD is 8 bits in length.

. 

04 vD vA vB 1026

0 5 6 10 11 15 16 20 21 31

Figure 6-24. vavgub—Average Sixteen Unsigned Integer Elements  (8-bits)
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vavguh vavguh
Vector Average Unsigned Halfword (0x1000 0442)

vavguh vD,vA,vB Form: VX 

do i=0 to 127 by 16
aop0:16 ← ZeroExtend((vA)i:i+15,17)
bop0:16 ← ZeroExtend((vB)i:i+15,17)
temp0:16 ← aop0:16 +int bop0:16 +int 1
(vD)i:i+15 ← temp0:15

end

Each unsigned-integer halfword element in register vA is added to the corresponding unsigned-integer half-
word element in register vB, producing a 17-bit unsigned-integer. The sum is incremented by ‘1’. The high-
order 16 bits of the result are placed into the corresponding halfword element of register vD.

Other registers altered: 

• None

Figure 6-25 shows the usage of the vavgsh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 1090

0 5 6 10 11 15 16 20 21 31

Figure 6-25. vavgsh — Average Eight Signed Integer Elements  (16-Bit)
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vavguw vavguw
Vector Average Unsigned Word (0x1000 0482)

vavguw vD,vA,vB Form: VX 

do i=0 to 127 by 32
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int bop0:32 +int 1
(vD)i:i+31 ← temp0:31

end

Each unsigned-integer word element in register vA is added to the corresponding unsigned-integer word 
element in register vB, producing an 33-bit unsigned-integer sum. The sum is incremented by ‘1’. The high-
order 32 bits of the result are placed into the corresponding word element of register vD.

Other registers altered: 

• None

Figure 6-26 shows the usage of the vavguw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 1154

0 5 6 10 11 15 16 20 21 31

Figure 6-26. vavguw—Average Four Unsigned Integer Elements  (32-Bit)
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vcfsx vcfsx
Vector Convert from Signed Fixed-Point Word (0x1000 034A)

vcfsx vD,vB,UIMM Form: VX 

do i=0 to 127 by 32

(vD)i:i+31 ← CnvtSI32ToFP32((vB)i:i+31) ÷fp 2UIMM

end

Each signed fixed-point integer word element in register vB is converted to the nearest single-precision 
floating-point value. The result is divided by 2UIMM (UIMM = unsigned immediate value) and placed into the 
corresponding word element in register vD.

Other registers altered: 

• None

Figure 6-27 shows the usage of the vcfsx instruction. Each of the four elements in the vectors vB and vD is 
32 bits in length.

04 vD UIMM vB 842

0 5 6 10 11 15 16 20 21 31

Figure 6-27. vcfsx—Convert Four Signed Integer Elements to Four Floating-Point Elements  (32-Bit)
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vcfux vcfux
Vector Convert from Unsigned Fixed-Point Word (0x1000 030A)

vcfux vD,vB,UIMM Form: VX

do i=0 to 127 by 32

(vD)i:i+31 ← CnvtUI32ToFP32((vB)i:i+31) ÷fp 2UIMM

end

Each unsigned fixed-point integer word element in register vB is converted to the nearest single-precision 
floating-point value. The result is divided by 2UIMM and placed into the corresponding word element in register 
vD.

Other registers altered: 

• None

Figure 6-28 shows the usage of the vcfux instruction. Each of the four elements in the registers vB and vD is 
32 bits in length.

04 vD UIMM vB 778

0 5 6 10 11 15 16 20 21 31

Figure 6-28. vcfux—Convert Four Unsigned Integer Elements to Four Floating-Point Elements  (32-Bit)
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vcmpbfpx vcmpbfpx
Vector Compare Bounds Floating Point (0x1000 03C6)

vcmpbfp  vD,vA,vB (Rc =‘0’) Form: VXR
vcmpbfp. vD,vA,vB (Rc =‘1’) 

do i=0 to 127 by 32
le ← ((vA)i:i+31 ≤fp (vB)i:i+31)
ge ← ((vA)i:i+31 ≥fp -(vB)i:i+31)
(vD)i:i+31 ← ¬le || ¬ge || 300

end
if Rc=1 then do

ib ← (vD = 1280)
CR24:27 ← 0b00 || ib || 0b0

end

Each single-precision floating-point word element in register vA is compared to the corresponding single-
precision floating-point element in register vB. A 2-bit value is formed that indicates whether the element in 
register vA is within the bounds specified by the element in register vB, as follows.

Bit [0] of the 2-bit value is ‘0’ if the element in register vA is less than or equal to the element in register vB, 
and is ‘1’ otherwise. Bit [1] of the 2-bit value is ‘0’ if the element in register vA is greater than or equal to the 
negative of the element in register vB, and is ‘1’ otherwise.

The 2-bit value is placed into the high-order two bits of the corresponding word element (bits [0–1] for word 
element 0, bits [32–33] for word element 1, bits [64–65] for word element 2, bits [96–97] for word element 3) 
of register vD and the remaining bits of the element are set to ‘0’.

If Rc=‘1’, CR Field 6 is set to indicate whether all four elements in register vA are within the bounds specified 
by the corresponding element in register vB, as follows:

• CR6 = 0b00 || all_within_bounds || 0

Note:  If any single-precision floating-point word element in register vB is negative; the corresponding ele-
ment in register vA is out of bounds. Note that if a vA or a vB element is a NaN, the two high order bits of the 
corresponding result will both have the value ‘1’.

If VSCR[NJ] =‘1’, every denormalized operand element is truncated to ‘0’ before the comparison is made.

Other registers altered:

• Condition Register (CR6):
Affected: Bit [2] (if Rc =‘1’)

Figure 6-29 shows the usage of the vcmpbfp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB Rc 966

0 5 6 10 11 15 16 20 21 22 31



Programming Environments Manual

  Vector/SIMD Multimedia Extension Technology

Version 2.07c
October 26, 2006  
 

Vector Processing Instructions

Page 165 of 329

Figure 6-29. vcmpbfp—Compare Bounds of Four Floating-Point Elements  (32-Bit)
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vcmpeqfpx vcmpeqfpx
Vector Compare Equal-to-Floating Point (0x1000 00C6)

vcmpeqfp vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpeqfp. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 32
if (vA)i:i+31 =fp (vB)i:i+31

then (vD)i:i+31 ← 0xFFFF_FFFF
else (vD)i:i+31 ← 0x0000_0000

end
if Rc=1 then do

t ← ( (vD) = 1281 )
f ← ( (vD) = 1280 )
CR24:27 ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in register vA is compared to the corresponding 
single-precision floating-point word element in register vB. The corresponding word element in vD is set to all 
‘1’s if the element in register vA is equal to the element in register vB, and is cleared to all ‘0’s otherwise.

If Rc =‘1’, CR6 field is set according to all, some, or none of the elements pairs compare equal: 

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note:  If a vA or vB element is a NaN, the corresponding result will be 0x0000_0000.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-30 shows the usage of the vcmpeqfp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB Rc 198

0 5 6 10 11 15 16 20 21 22 31

Figure 6-30. vcmpeqfp—Compare Equal of Four Floating-Point Elements  (32-Bit)
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vcmpequbx vcmpequbx
Vector Compare Equal-to Unsigned Byte (0x1000 0006)

vcmpequb vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpequb. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 8
if (vA)i:i+7 =int (vB)i:i+7
then (vD)i:i+7 ← 81

else (vD)i:i+7 ← 80

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each integer byte element in register vA is compared to the corresponding integer byte element in register 
vB. The corresponding byte element in register vD is set to all ‘1’s if the element in register vA is equal to the 
element in register vB, and is cleared to all ‘0’s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal: 

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note:  vcmpequb[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0–3] (if Rc =‘1’)

Figure 6-31 shows the usage of the vcmpequb instruction. Each of the sixteen elements in the registers vA, 
vB, and vD is 8 bits in length.

04 vD vA vB Rc 6

0 5 6 10 11 15 16 20 21 22 31

Figure 6-31. vcmpequb—Compare Equal of Sixteen Integer Elements  (8-bits)
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vcmpequhx vcmpequhx
Vector Compare Equal-to Unsigned Halfword (0x1000 0046)

vcmpequh vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpequh. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 16
if (vA)i:i+15 =int (vB)i:i+15
then vDi:i+15 ← 161

else vDi:i+15 ← 160

end
if Rc=1 then do

t ← (vD = 1281)
f ← (vD = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each integer halfword element in vA is compared to the corresponding integer halfword element in vB. The 
corresponding halfword element in vD is set to all ‘1’s if the element in vA is equal to the element in vB, and 
is cleared to all ‘0’s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal: 

• CR6 = all_equal || 0b0 || none_equal || 0b0.

Note:  vcmpequh[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0–3] (if Rc =‘1’)

Figure 6-32 shows the usage of the vcmpequh instruction. Each of the eight elements in the registers vA, 
vB, and vD is 16 bits in length.

04 vD vA vB Rc 70

0 5 6 10 11 15 16 20 21 22 31

Figure 6-32. vcmpequh—Compare Equal of Eight Integer Elements  (16-Bit)

 = = ======

vA

vB

vD



Programming Environments Manual

  Vector/SIMD Multimedia Extension Technology

Version 2.07c
October 26, 2006  
 

Vector Processing Instructions

Page 169 of 329

vcmpequwx vcmpequwx
Vector Compare Equal-to Unsigned Word (0x1000 0086)

vcmpequw vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpequw. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 32
if (vA)i:i+311 =int (vB)i:i+31
    then (vD)i:i+31 ← n1

    else (vD)i:i+31 ← n0

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each integer word element in register vA is compared to the corresponding integer word element in register 
vB. The corresponding element in register vD is set to all ‘1’s if the element in register vA is equal to the 
element in register vB, and is cleared to all ‘0’s otherwise.

The CR6 is set according to whether all, some, or none of the elements compare equal: 

• CR6 = all_equal || 0b0 || none_equal || 0b0

Note:  vcmpequw[.] can be used for unsigned or signed integers.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-33 shows the usage of the vcmpequw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB Rc 134

0 5 6 10 11 15 16 20 21 22 31

Figure 6-33. vcmpequw—Compare Equal of Four Integer Elements  (32-Bit)
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vcmpgefpx vcmpgefpx
Vector Compare Greater-Than-or-Equal-to Floating Point (0x1000 01C6)

vcmpgefp vD,vA,vB (Rc =‘0’) Form: VXR
vcmpgefp. vD,vA,vB (Rc =‘1’) 

do i=0 to 127 by 32
if (vA)i:i+31 ≥fp (vB)i:i+31
then (vD)i:i+31 ← 0xFFFF_FFFF
else (vD)i:i+31 ← 0x0000_0000

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in register vA is compared to the corresponding single-
precision floating-point word element in register vB. The corresponding word element in register vD is set to 
all ‘1’s if the element in register vA is greater than or equal to the element in register vB, and is cleared to all 
‘0’s otherwise.

If Rc =‘1’, CR6 is set as follows:
• CR6 = all_greater_or_equal || 0b0 || none greater_or_equal || 0b0.

Note:  If a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-34 shows the usage of the vcmpgefp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB Rc 454

0 5 6 10 11 15 16 20 21 22 31

Figure 6-34. vcmpgefp—Compare Greater-Than-or-Equal of Four Floating-Point Elements  (32-Bit)
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vcmpgtfpx vcmpgtfpx
Vector Compare Greater-Than Floating-Point (0x1000 02C6)

vcmpgtfp vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpgtfp. vD,vA,vB (Rc = ‘1’) 

do i=0 to 127 by 32
if (vA)i:i+31 >fp (vB)i:i+31
    then (vD)i:i+31 ← 0xFFFF_FFFF
    else (vD)i:i+31 ← 0x0000_0000

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR[24:27] ← t || 0b0 || f || 0b0

end

Each single-precision floating-point word element in register vA is compared to the corresponding single-
precision floating-point word element in register vB. The corresponding word element in register vD is set to 
all ‘1’s if the element in register vA is greater than the element in register vB, and is cleared to all ‘0’s other-
wise.

If Rc =‘1’, CR6 is set as follows:
• CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Note:  If a vA or vB element is a NaN, the corresponding results will be 0x0000_0000.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-17 shows the usage of the vcmpgtfp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB Rc 710

0 5 6 10 11 15 16 20 21 22 31

Figure 6-35. vcmpgtfp—Compare Greater-Than of Four Floating-Point Elements  (32-Bit)
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vcmpgtsbx vcmpgtsbx
Vector Compare Greater-Than Signed Byte (0x1000 0306)

vcmpgtsb vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpgtsb. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 8
if (vA)i:i+7 >si (vB)i:i+7
    then (vD)i:i+7 ← 81

    else (vD)i:i+7 ← 80

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each signed-integer byte element in register vA is compared to the corresponding signed-integer byte 
element in register vB. The corresponding element in vD is set to all ‘1’s if the element in vA is greater than 
the element in vB, and is cleared to all ‘0’s otherwise.

If Rc =‘1’, CR6 is set as follows:
• CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-36 shows the usage of the vcmpgtsb instruction. Each of the sixteen elements in the registers vA, 
vB, and vD is 8 bits in length.

04 vD vA vB Rc 774

0 5 6 10 11 15 16 20 21 22 31

Figure 6-36. vcmpgtsb—Compare Greater-Than of Sixteen Signed Integer Elements  (8-Bit)
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vcmpgtshx vcmpgtshx
Vector Compare Greater-Than Signed Halfword (0x1000 0346)

vcmpgtsh vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpgtsh. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 16
if (vA)i:i+15 >si (vB)i:i+15
    then (vD)i:i+15 ¨ 

161

    else (vD)i:i+15 ¨ 
160

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each signed-integer halfword element in register vA is compared to the corresponding signed-integer half-
word element in register vB. The corresponding halfword element in register vD is set to all ‘1’s if the element 
in vA is greater than the element in vB, and is cleared to all ‘0’s otherwise.

If Rc =‘1’, CR6 is set as follows:
• CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-37 shows the usage of the vcmpgtsh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB Rc 838

0 5 6 10 11 15 16 20 21 22 31

Figure 6-37. vcmpgtsh—Compare Greater-Than of Eight Signed Integer Elements  (16-Bit)
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vcmpgtswx vcmpgtswx
Vector Compare Greater-Than Signed Word (0x1000 0386)

vcmpgtsw vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpgtsw. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 32
if (vA)i:i+31 >si (vB)i:i+31
    then (vD)i:i+31 ← 321

    else (vD)i:i+31 ← 320

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR24:27 ← t || 0b0 || f || 0b0

end

Each signed-integer word element in register vA is compared to the corresponding signed-integer word 
element in register vB. The corresponding word element in register vD is set to all ‘1’s if the element in vA is 
greater than the element in vB, and is cleared to all ‘0’s otherwise.

If Rc =‘1’, CR6 is set as follows:
• CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-38 shows the usage of the vcmpgtsw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB Rc 902

0 5 6 10 11 15 16 20 21 22 31

Figure 6-38. vcmpgtsw—Compare Greater-Than of Four Signed Integer Elements  (32-Bit)
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vcmpgtubx vcmpgtubx
Vector Compare Greater-Than Unsigned Byte (0x1000 0206)

vcmpgtub vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpgtub. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 8
if (vA)i:i+7 >ui (vB)i:i+7
    then (vD)i:i+7 ← 81

    else (vD)i:i+7 ← 80

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each unsigned-integer byte element in register vA is compared to the corresponding unsigned-integer byte 
element in register vB. The corresponding byte element in register vD is set to all ‘1’s if the element in vA is 
greater than the element in vB, and is cleared to all ‘0’s otherwise.

If Rc =‘1’, CR6 is set as follows:
• CR6 = all_greater_than || 0b0 || none greater_than || 0b0.

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-39 shows the usage of the vcmpgtub instruction. Each of the sixteen elements in the registers vA, 
vB, and vD is 8 bits in length.

04 vD vA vB Rc 518

0 5 6 10 11 15 16 20 21 22 31

Figure 6-39. vcmpgtub—Compare Greater-Than of Sixteen Unsigned Integer Elements (8-Bit)
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vcmpgtuhx vcmpgtuhx
Vector Compare Greater-Than Unsigned Halfword (0x1000 0246)

vcmpgtuh vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpgtuh. vD,vA,vB (Rc = ‘1’)

do i=0 to 127 by 16
if (vA)i:i+151 >ui (vB)i:i+15
    then (vD)i:i+15 ← 161

    else (vD)i:i+15 ← 160

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each unsigned-integer halfword element in register vA is compared to the corresponding unsigned-integer 
halfword element in register vB. The corresponding halfword element in register vD is set to all ‘1’s if the 
element in vA is greater than the element in vB, and is cleared to all ‘0’s otherwise.

If Rc =‘1’, CR6 is set as follows: 
• CR6 = all_greater_than || 0b0 || none greater_than || 0b0 

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-40 shows the usage of the vcmpgtuh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB Rc 582

0 5 6 10 11 15 16 20 21 22 31

Figure 6-40. vcmpgtuh—Compare Greater-Than of Eight Unsigned Integer Elements (16-Bit)
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vcmpgtuwx vcmpgtuwx
Vector Compare Greater-Than Unsigned Word (0x1000 0286)

vcmpgtuw vD,vA,vB (Rc = ‘0’) Form: VXR
vcmpgtuw. vD,vA,vB (Rc = ‘1’) 

do i=0 to 127 by 32
if (vA)i:i+31 >ui (vB)i:i+31
    then (vD)i:i+31 ← 321

    else (vD)i:i+31 ← 320

end
if Rc=1 then do

t ← ((vD) = 1281)
f ← ((vD) = 1280)
CR[24–27] ← t || 0b0 || f || 0b0

end

Each unsigned-integer word element in register vA is compared to the corresponding unsigned-integer word 
element in register vB. The corresponding word element in register vD is set to all ‘1’s if the element in vA is 
greater than the element in vB, and is cleared to all ‘0’s otherwise.

If Rc =‘1’, CR6 is set as follows:
• CR6 = all_greater_than || 0b0 || none_greater_than || 0b0

Other registers altered:

• Condition Register (CR6):
Affected: Bits [0-3] (if Rc =‘1’)

Figure 6-41 shows the usage of the vcmpgtuw instruction. Each of the four elements in the vectors, vA, vB, 
and vD, is 32 bits in length.

04 vD vA vB Rc 646

0 5 6 10 11 15 16 20 21 22 31

Figure 6-41. vcmpgtuw—Compare Greater-Than of Four Unsigned Integer Elements  (32-Bit)
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vctsxs vctsxs
Vector Convert to Signed Fixed-Point Word Saturate (0x1000 03CA)

vctsxs vD,vB,UIMM Form: VX

do i=0 to 127 by 32
if (vB)i+1:i+8=255 | (vB)i+1:i+8 + UIMM ≤ 254 then
(vD)i:i+31 ← CnvtFP32ToSI32Sat((vB)i:i+31 *fp 2

UIMM)
 else
    do

if (vB)i=0 then (vD)i:i+31 ← 0x7FFF_FFFF
      else (vD)i:i+31 ← 0x8000_0000
      VSCRSAT ← 1

end
end

Each single-precision word element in register vB is multiplied by 2UIMM. The product is converted to a signed 
integer using the rounding mode, Round toward Zero. If the intermediate result is greater than (231-1) it satu-
rates to (231-1); if it is less than -231 it saturates to -231. A signed-integer result is placed into the corre-
sponding word element in register vD.

Fixed-point integers used by the vector convert instructions can be interpreted as consisting of 32-UIMM 
integer bits followed by UIMM fraction bits. The vector convert to fixed-point word instructions support only 
the rounding mode, Round toward Zero. A single-precision number can be converted to a fixed-point integer 
using any of the other three rounding modes by executing the appropriate vector round to floating-point 
integer instruction before the vector convert to fixed-point word instruction.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-42 shows the usage of the vctsxs instruction. Each of the four elements in the vectors vB and vD is 
32 bits in length. 

04 vD UIMM vB 970

0 5 6 10 11 15 16 20 21 31

Figure 6-42. vctsxs—Convert Four Floating-Point Elements to Four Signed Integer Elements  (32-Bit)
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vctuxs vctuxs
Vector Convert to Unsigned Fixed-Point Word Saturate (0x1000 038A)

vctuxs vD,vB,UIMM Form: VX 

do i=0 to 127 by 32
if (vB)i+1:i+8=255 | (vB)i+1:i+8 + UIMM ≤ 254 then
(vD)i:i+31 ← CnvtFP32ToUI32Sat((vB)i:i+31 *fp 2

UIM)
 else
    do
      if (vB)i=0 then vDi:i+31 ← 0xFFFF_FFFF
      else (vD)i:i+31 ← 0x0000_0000
      VSCRSAT ← 1

end
end

Each single-precision floating-point word element in vB is multiplied by 2UIM. The product is converted to an 
unsigned fixed-point integer using the rounding mode Round toward Zero. If the intermediate result is greater 
than (232-1) it saturates to (232-1) and if it is less than ‘0’ it saturates to ‘0’. The unsigned-integer result is 
placed into the corresponding word element in register vD.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-43 shows the usage of the vctuxs instruction. Each of the four elements in the vectors vB and vD is 
32 bits in length.

04 vD UIMM vB 906

0 5 6 10 11 15 16 20 21 31

Figure 6-43. vctuxs—Convert Four Floating-Point Elements to Four Unsigned Integer Elements  (32-Bit)
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vexptefp vexptefp
Vector 2 Raised to the Exponent Estimate Floating Point (0x1000 018A)

vexptefp vD,vB Form: VX 

do i=0 to 127 by 32
x ← (vB)i:i+31

(vD)i:i+31 ← 2x

end

The single-precision floating-point estimate of 2 raised to the power of each single-precision floating-point 
element in register vB is placed into the corresponding element in register vD.

The estimate has a relative error in precision no greater than one part in 16, that is, 

where x is the value of the element in vB. The most significant 12 bits of the estimate's significant are mono-
tonic. Note that the value placed into the element of vD may vary between implementations, and between 
different executions on the same implementation.

If an operation has an integral value and the resulting value is not ‘0’ or +∞, the result is exact.

Operation with various special values of the element in vB is summarized below. 

If VSCR[NJ] =‘1’, every denormalized operand element is truncated to a ‘0’ of the same sign before the oper-
ation is carried out, and each denormalized result element truncates to a ‘0’ of the same sign.

Other registers altered:

• None

Figure 6-44 shows the usage of the vexptefp instruction. Each of the four elements in the registers vB and 
vD is 32 bits in length. 

04 vD 0 0 0 0 0 vB  394 

0 5 6 10 11 15 16 20 21 31

Table 6-5. vexptefp Operation with Various Values of Element vB 

Value of Element in vB Result

-∞ +0

-0 +1

+0 +1

+∞ +∞

NaN QNaN

estimate 2
x

–

2
x

-------------------------------------
1
16
------≤
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Figure 6-44. vexptefp—2 Raised to the Exponent Estimate Floating-Point for Four Floating-Point Elements 
(32-Bit)

2x2x2x 2x

vB

vD

x x x x



Programming Environments Manual
 
Vector/SIMD Multimedia Extension Technology   

Vector Processing Instructions

Page 182 of 329
Version 2.07c

October 26, 2006

vlogefp vlogefp
Vector Log2 Estimate Floating Point (0x1000 01CA)

vlogefp vD,vB Form: VX 

do i=0 to 127 by 32
x ← (vB)i:i+31
(vD)i:i+31 ← log2(x)

end

The single-precision floating-point estimate of the base 2 logarithm of each single-precision floating-point 
element in register vB is placed into the corresponding element in register vD.

Let x be any single-precision floating-point input value. Unless | x-1 | is less than or equal to 0.125 or the 
single-precision floating-point result of computing the base 2 logarithm of x would be an infinity or a QNaN, 
the estimate has an absolute error in precision (absolute value of the difference between the estimate and the 
infinitely precise value) no greater than 2-5. Under the same conditions, the estimate has a relative error in 
precision no greater than one part in 8.

The most significant 12 bits of the estimate’s significand are monotonic. The estimate is exact if x=2y, where 
y is an integer between -149 and +127 inclusive. Otherwise the value placed into the element of register vD 
may vary between implementations and between different executions on the same implementation.

Operation with various special values of the element in register vB is summarized below. 

If VSCR[NJ] =‘1’, every denormalized operand element is truncated to a ‘0’ of the same sign before the oper-
ation is carried out, and each denormalized result element truncates to a ‘0’ of the same sign.

Other registers altered:

• None

Figure 6-45 shows the usage of the vlogefp instruction. Each of the four elements in the registers vB and vD 
is 32 bits in length. 

04 vD 0 0 0 0 0 vB 458

0 5 6 10 11 15 16 20 21 31

Table 6-6. vlogefp with Special Values 

Value Result

-∞ QNaN

less than 0 QNaN

±0 -∞

+∞ +∞

NaN QNaN
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Figure 6-45. vlogefp—Log2 Estimate Floating-Point for Four Floating-Point Elements  (32-Bit)
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vmaddfp vmaddfp
Vector Multiply Add Floating Point (0x1000 002E)

vmaddfp vD,vA,vC,vB Form: VA 

do i=0 to 127 by 32
(vD)i:i+31 ← RndToNearFP32(((vA)i:i+31 *fp (vC)i:i+31) +fp (vB)i:i+31)

end

Each single-precision floating-point word element in register vA is multiplied by the corresponding single-
precision floating-point word element in register vC. The corresponding single-precision floating-point word 
element in register vB is added to the product. The result is rounded to the nearest single-precision floating-
point number and placed into the corresponding word element in register vD.

Note that a vector multiply floating-point instruction is not provided. The effect of such an instruction can be 
obtained by using vmaddfp with vB containing the value -0.0 (0x8000_0000) in each of its four single-preci-
sion floating-point word elements. (The value must be -0.0, not +0.0, in order to obtain the IEEE-conforming 
result of -0.0 when the result of the multiplication is -0.)

Other registers altered:

• None

If VSCR[NJ] =‘1’, every denormalized operand element is truncated to a ‘0’ of the same sign before the oper-
ation is carried out, and each denormalized result element truncates to a ‘0’ of the same sign.

Figure 6-46 shows the usage of the vmaddfp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length. 

04 vD vA vB vC 46

0 5 6 10 11 15 16 20 21 26 31

Figure 6-46. vmaddfp—Multiply-Add Four Floating-Point Elements  (32-Bit)
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vmaxfp vmaxfp
Vector Maximum Floating Point (0x1000 040A)

vmaxfp vD,vA,vB Form: VX 

do i=0 to 127 by 32

if (vA)i:i+31 ≥fp (vB)i:i+31
    then (vD)i:i+31 ← (vA)i:i+31
    else (vD)i:i+31 ← (vB)i:i+31

end

Each single-precision floating-point word element in register vA is compared to the corresponding single-
precision floating-point word element in register vB. The larger of the two single-precision floating-point 
values is placed into the corresponding word element in register vD.

The maximum of +0 and -0 is +0. The maximum of any value and a NaN is a QNaN.

Other registers altered:

• None

Figure 6-47 shows the usage of the vmaxfp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 1034

0 5 6 10 11 15 16 20 21 31

Figure 6-47. vmaxfp—Maximum of Four Floating-Point Elements  (32-Bit)
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vmaxsb vmaxsb
Vector Maximum Signed Byte (0x1000 0102)

vmaxsb vD,vA,vB Form: VX 

do i=0 to 127 by 8
if (vA)i:i+7 ≥si (vB)i:i+7
    then (vD)i:i+7 ← (vA)i:i+7
    else (vD)i:i+7 ← (vB)i:i+7

end

Each signed-integer byte element in register vA is compared to the corresponding signed-integer byte 
element in register vB. The larger of the two signed-integer values is placed into the corresponding byte 
element in register vD.

Other registers altered:

• None

Figure 6-48 shows the usage of the vmaxsb instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 258

0 5 6 10 11 15 16 20 21 31

Figure 6-48. vmaxsb—Maximum of Sixteen Signed Integer Elements  (8-Bit)
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vmaxsh vmaxsh
Vector Maximum Signed Halfword (0x1000 0142)

vmaxsh vD,vA,vB Form: VX 

do i=0 to 127 by 16
if (vA)i:i+7 ≥si (vB)i:i+15
    then (vD)i:i+15 ← (vA)i:i+15
    else (vD)i:i+15 ← (vB)i:i+15

end

Each signed-integer halfword element in register vA is compared to the corresponding signed-integer half-
word element in register vB. The larger of the two signed-integer values is placed into the corresponding half-
word element in register vD.

Other registers altered:

• None

Figure 6-49 shows the usage of the vmaxsh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 322

0 5 6 10 11 15 16 20 21 31

Figure 6-49. vmaxsh—Maximum of Eight Signed Integer Elements  (16-Bit)
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vmaxsw vmaxsw
Vector Maximum Signed Word (0x1000 0182)

vmaxsw vD,vA,vB Form: VX 

do i=0 to 127 by 32
if (vA)i:i+31 ≥si (vB)i:i+31
    then (vD)i:i+31 ← (vA)i:i+31
    else (vD)i:i+31 ← (vB)i:i+31

end

Each signed-integer word element in register vA is compared to the corresponding signed-integer word 
element in register vB. The larger of the two signed-integer values is placed into the corresponding word 
element in register vD.

Other registers altered:

• None

Figure 6-50 shows the usage of the vmaxsw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 386

0 5 6 10 11 15 16 20 21 31

Figure 6-50. vmaxsw—Maximum of Four Signed Integer Elements  (32-Bit)
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vmaxub vmaxub
Vector Maximum Signed Byte (0x1000 0002)

vmaxub vD,vA,vB Form: VX 

do i=0 to 127 by 8
if (vA)i:i+7 ≥ui (vB)i:i+7
    then (vD)i:i+7 ← (vA)i:i+7
    else (vD)i:i+7 ← (vB)i:i+7

end

Each unsigned-integer byte element in register vA is compared to the corresponding unsigned-integer byte 
element in register vB. The larger of the two unsigned-integer values is placed into the corresponding byte 
element in register vD.

Other registers altered:

• None

Figure 6-51 shows the usage of the vmaxub instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 2

0 5 6 10 11 15 16 20 21 31

Figure 6-51. vmaxub—Maximum of Sixteen Unsigned Integer Elements  (8-Bit)
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vmaxuh vmaxuh
Vector Maximum Unsigned Halfword (0x1000 0042)

vmaxuh vD,vA,vB Form: VX 

do i=0 to 127 by 16
if (vA)i:i+15 ≥ui (vB)i:i+15
    then (vD)i:i+15 ← (vA)i:i+15
    else (vD)i:i+15 ← (vB)i:i+15

end

Each unsigned-integer halfword element in register vA is compared to the corresponding unsigned-integer 
halfword element in register vB. The larger of the two unsigned-integer values is placed into the corre-
sponding halfword element in register vD.

Other registers altered:

• None

Figure 6-52 shows the usage of the vmaxuh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 66

0 5 6 10 11 15 16 20 21 31

Figure 6-52. vmaxuh—Maximum of Eight Unsigned Integer Elements  (16-Bit)

≥ui≥ui≥ui≥ui≥ui≥ui≥ui≥ui

vA

vB

vD



Programming Environments Manual

  Vector/SIMD Multimedia Extension Technology

Version 2.07c
October 26, 2006  
 

Vector Processing Instructions

Page 191 of 329

vmaxuw vmaxuw
Vector Maximum Unsigned Word (0x1000 0082)

vmaxuw vD,vA,vB Form: VX 

do i=0 to 127 by 32
if (vA)i:i+31 ≥ui (vB)i:i+31
    then (vD)i:i+31 ← (vA)i:i+31
    else (vD)i:i+31 ← (vB)i:i+31

end

Each unsigned-integer word element in register vA is compared to the corresponding unsigned-integer word 
element in register vB. The larger of the two unsigned-integer values is placed into the corresponding word 
element in register vD.

Other registers altered:

• None

Figure 6-53 shows the usage of the vmaxuw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 130

0 5 6 10 11 15 16 20 21 31

Figure 6-53. vmaxuw—Maximum of Four Unsigned Integer Elements  (32-Bit)
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vmhaddshs vmhaddshs
Vector Multiply High and Add Signed Halfword Saturate (0x1000 0020)

vmhaddshs vD,vA,vB,vC Form: VA 

do i=0 to 127 by 16
prod0:31 ← (vA)i:i+15 *si (vB)i:i+15
temp0:16 ← prod0:16 +int SignExtend((vC)i:i+15,17)
(vD)i:i+15 ← SItoSIsat(temp0:16,16)

end

Each signed-integer halfword element in register vA is multiplied by the corresponding signed-integer half-
word element in register vB, producing a 32-bit signed-integer product. The corresponding signed-integer 
halfword element in register vC is sign-extended to 17 bits and added to bits [0:16] of the product. If the inter-
mediate result is greater than 215-1, it saturates to 215-1. If the intermediate result is less than -215, it saturates 
to -215. If saturation occurs, the SAT bit is set. The signed-integer result is placed into the corresponding half-
word element in register vD.

Other registers altered:

• Vector Status and Control Register (VSCR):
Affected: SAT

Figure 6-54 shows the usage of the vmhaddshs instruction. Each of the eight elements in the registers vA, 
vB, vC, and vD is 16 bits in length.

04 vD vA vB vC 32

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-54. vmhaddshs—Multiply-High and Add Eight Signed Integer Elements  (16-Bit)
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vmhraddshs vmhraddshs
Vector Multiply High Round and Add Signed Halfword Saturate (0x1000 0021)

vmhraddshs vD,vA,vB,vC Form: VA 

do i=0 to 127 by 16
prod0:31 ← (vA)i:i+15 *si (vB)i:i+15
prod0:31 ← prod0:31 +int 0x0000_4000
temp0:16 ← prod0:16 +int SignExtend((vC)i:i+15,17) 

(vD)i:i+15 ← SItoSIsat(temp0:16,16)

end

Each signed-integer halfword element in register vA is multiplied by the corresponding signed-integer half-
word element in register vB, producing a 32-bit signed-integer product. The product is rounded by adding the 
value 0x0000_4000. The corresponding signed-integer halfword element in register vC is sign-extended to 
17 bits and added to bits [0:16] of the rounded product. If the intermediate result is greater than (215-1), it 
saturates to (215-1). If the intermediate result is less than (-215), it saturates to (-215). If saturation occurs, the 
SAT bit is set. The signed-integer result is placed into the corresponding halfword element of register vD.

Figure 6-55 shows the usage of the vmhraddshs instruction. Each of the eight elements in the registers vA, 
vB, vC, and vD is 16 bits in length.

04 vD vA vB vC 33

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-55. vmhraddshs—Multiply-High Round and Add Eight Signed Integer Elements (16-Bit) 
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vminfp vminfp
Vector Minimum Floating Point(0x1000 044A)

vminfp vD,vA,vB Form: VX 

do i=0 to 127 by 32
if (vA)i:i+31 <fp (vB)i:i+31
    then (vD)i:i+31 ← (vA)i:i+31
    else (vD)i:i+31 ← (vB)i:i+31

end

Each single-precision floating-point word element in register vA is compared to the corresponding single-
precision floating-point word element in register vB. The smaller of the two single-precision floating-point 
values is placed into the corresponding word element of register vD.

The minimum of + 0.0 and - 0.0 is - 0.0. The minimum of any value and a NaN is a QNaN.

If VSCR[NJ] =‘1’, every denormalized operand element is truncated to ‘0’ before the comparison is made.

Figure 6-56 shows the usage of the vminfp instruction. Each of the four elements in the registers vA, vB, and 
vD is 32 bits in length.

04 vD vA vB 1098

0 5 6 10 11 15 16 20 21 31

Figure 6-56. vminfp—Minimum of Four Floating-Point Elements  (32-Bit)
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vminsb vminsb
Vector Minimum Signed Byte (0x1000 0302)

vminsb vD,vA,vB Form: VX 

do i=0 to 127 by 8
if (vA)i:i+7 <si (vB)i:i+7
    then (vD)i:i+7 ← (vA)i:i+7
    else (vD)i:i+7 ← (vB)i:i+7

end

Each signed-integer byte element in register vA is compared to the corresponding signed-integer byte 
element in register vB. The larger of the two signed-integer values is placed into the corresponding byte 
element in register vD.

Other registers altered:

• None

Figure 6-57 shows the usage of the vminsb instruction. Each of the 16 elements in the registers vA, vB, and 
vD is 8 bits in length.

04 vD vA vB 770

0 5 6 10 11 15 16 20 21 31

Figure 6-57. vminsb—Minimum of Sixteen Signed Integer Elements  (8-Bit)
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vminsh vminsh
Vector Minimum Signed Halfword (0x1000 0342)

vminsh vD,vA,vB Form: VX 

do i=0 to 127 by 16
if (vA)i:i+15<si (vB)i:i+15
    then (vD)i:i+15 ← (vA)i:i+15
    else (vD)i:i+15 ← (vB)i:i+15

end

Each signed-integer halfword element in register vA is compared to the corresponding signed-integer half-
word element in register vB. The larger of the two signed-integer values is placed into the corresponding half-
word element in register vD.

Other registers altered:

• None

Figure 6-58 shows the usage of the vminsh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 834

0 5 6 10 11 15 16 20 21 31

Figure 6-58. vminsh—Minimum of Eight Signed Integer Elements  (16-Bit)
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vminsw vminsw
Vector Minimum Signed Word (0x1000 0382)

vminsw vD,vA,vB Form: VX 

do i=0 to 127 by 32
if (vA)i:i+31 <si (vB)i:i+31
    then (vD)i:i+31 ← (vA)i:i+31
    else (vD)i:i+31 ← (vB)i:i+31

end

Each signed-integer word element in register vA is compared to the corresponding signed-integer word 
element in register vB. The larger of the two signed-integer values is placed into the corresponding word 
element in register vD.

Other registers altered:

• None

Figure 6-59 shows the usage of the vminsw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 898

0 5 6 10 11 15 16 20 21 31

Figure 6-59. vminsw—Minimum of Four Signed Integer Elements  (32-Bit)
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vminub vminub
Vector Minimum Unsigned Byte (0x1000 0202)

vminub vD,vA,vB Form: VX 

do i=0 to 127 by 8
if (vA)i:i+7 <ui (vB)i:i+7
    then (vD)i:i+7 ← (vA)i:i+7
    else (vD)i:i+7 ← (vB)i:i+7

end

Each unsigned-integer byte element in register vA is compared to the corresponding unsigned-integer byte 
element in register vB. The larger of the two unsigned-integer values is placed into the corresponding byte 
element in register vD.

Other registers altered:

• None

Figure 6-60 shows the usage of the vminub instruction. Each of the 16 elements in the registers vA, vB, and 
vD is 8 bits in length.

04 vD vA vB 514

0 5 6 10 11 15 16 20 21 31

Figure 6-60. vminub—Minimum of Sixteen Unsigned Integer Elements  (8-Bit)
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vminuh vminuh
Vector Minimum Unsigned Halfword (0x1000 0242)

vminuh vD,vA,vB Form: VX 

do i=0 to 127 by 16
if (vA)i:i+15 <ui (vB)i:i+15
    then (vD)i:i+15 ← (vA)i:i+15
    else (vD)i:i+15 ← (vB)i:i+15

end

Each unsigned-integer halfword element in register vA is compared to the corresponding unsigned-integer 
halfword element in register vB. The larger of the two unsigned-integer values is placed into the corre-
sponding halfword element in register vD.

Other registers altered:

• None

Figure 6-61 shows the usage of the vminuh instruction. Each of the eight elements in the register vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 578

0 5 6 10 11 15 16 20 21 31

Figure 6-61. vminuh—Minimum of Eight Unsigned Integer Elements  (16-Bit)

<ui<ui<ui<ui<ui<ui<ui<ui

vA

vB

vD



Programming Environments Manual
 
Vector/SIMD Multimedia Extension Technology   

Vector Processing Instructions

Page 200 of 329
Version 2.07c

October 26, 2006

vminuw vminuw
Vector Minimum Unsigned Word (0x1000 0282)

vminuw vD,vA,vB Form: VX 

do i=0 to 127 by 32
if (vA)i:i+31 <ui (vB)i:i+31
    then (vD)i:i+31 ← (vA)i:i+31
    else (vD)i:i+31 ← (vB)i:i+31

end

Each unsigned-integer word element in register vA is compared to the corresponding unsigned-integer word 
element in register vB. The larger of the two unsigned-integer values is placed into the corresponding word 
element in register vD.

Other registers altered:

• None

Figure 6-62 shows the usage of the vminuw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 642

0 5 6 10 11 15 16 20 21 31

Figure 6-62. vminuw—Minimum of Four Unsigned Integer Elements  (32-Bit)
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vmladduhm vmladduhm
Vector Multiply Low and Add Unsigned Halfword Modulo (0x1000 0022)

vmladduhm vD,vA,vB,vC Form: VA 

do i=0 to 127 by 16
prod0:31← (vA)i:i+15 *ui (vB)i:i+15
(vD)i:i+15← prod0:31 +int (vC)i:i+15

end

Each integer halfword element in register vA is multiplied by the corresponding integer halfword element in 
register vB, producing a 32-bit integer product. The product is added to the corresponding integer halfword 
element in register vC. The integer result is placed into the corresponding halfword element in register vD.

Note:  vmladduhm can be used for unsigned or signed integers.

Other registers altered: 

• None

Figure 6-63 shows the usage of the vmladduhm instruction. Each of the eight elements in the registers vA, 
vB, vC, and vD is 16 bits in length.

04 vD vA vB vC 34

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-63. vmladduhm—Multiply-Add of Eight Integer Elements  (16-Bit)
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vmrghb vmrghb
Vector Merge High Byte (0x1000 000C)

vmrghb vD,vA,vB Form: VX 

do i=0 to 63 by 8
(vD)i*2:(i*2)+15 ← (vA)i:i+7 || (vB)i:i+7

end

The byte elements in the high-order half of register vA are placed, in the same order, into the even-numbered 
byte elements of register vD. The byte elements in the high-order half of register vB are placed, in the same 
order, into the odd-numbered byte elements of register vD.

Other registers altered:

• None

Figure 6-64 shows the usage of the vmrghb instruction. Each of the sixteen elements in the registers vA, vB, 
and vD is 8 bits in length.

04 vD vA vB 12

0 5 6 10 11 15 16 20 21 31

Figure 6-64. vmrghb—Merge Eight High-Order Elements  (8-Bit)
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vmrghh vmrghh
Vector Merge High Halfword (0x1000 004C)

vmrghh vD,vA,vB Form: VX 

do i=0 to 63 by 16
(vD)i*2:(i*2)+31 ← (vA)i:i+15 || (vB)i:i+15

end

The halfword elements in the high-order half of register vA are placed, in the same order, into the even-
numbered halfword elements of register vD. The halfword elements in the high-order half of register vB are 
placed, in the same order, into the odd-numbered halfword elements of register vD.

Other registers altered:

• None

Figure 6-65 shows the usage of the vmrghh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 76

0 5 6 10 11 15 16 20 21 31

Figure 6-65. vmrghh—Merge Four High-Order Elements  (16-Bit)
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vmrghw vmrghw
Vector Merge High Word (0x1000 008C)

vmrghw vD,vA,vB Form: VX 

do i=0 to 63 by 32
(vD)i*2:(i*2)+63 ← (vA)i:i+31 || (vB)i:i+31

end

The word elements in the high-order half of register vA are placed, in the same order, into the even-
numbered word elements of register vD. The word elements in the high-order half of register vB are placed, 
in the same order, into the odd-numbered word elements of register vD.

Other registers altered:

• None

Figure 6-66 shows the usage of the vmrghw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 140

0 5 6 10 11 15 16 20 21 31

Figure 6-66. vmrghw—Merge Two High-Order Elements  (32-Bit)
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vmrglb vmrglb
Vector Merge Low Byte (0x1000 010C)

vmrglb vD,vA,vB Form: VX

do i=0 to 63 by 8
(vD)i*2:(i*2)+15 ← (vA)i+64:i+71 || (vB)i+64:i+71

end

The byte elements in the low-order half of register vA are placed, in the same order, into the even-numbered 
byte elements of register vD. The byte elements in the low-order half of register vB are placed, in the same 
order, into the odd-numbered elements of register vD.

Other registers altered:

• None

Figure 6-67 shows the usage of the vmrglb instruction. Each of the sixteen elements in the registers vA, vB, 
and vD is 8 bits in length.

04 vD vA vB 268

0 5 6 10 11 15 16 20 21 31

Figure 6-67. vmrglb—Merge Eight Low-Order Elements  (8-Bit)

vA

vB

vD



Programming Environments Manual
 
Vector/SIMD Multimedia Extension Technology   

Vector Processing Instructions

Page 206 of 329
Version 2.07c

October 26, 2006

vmrglh vmrglh
Vector Merge Low Halfword (0x1000 014C)

vmrglh vD,vA,vB Form: VX

do i=0 to 63 by 16
(vD)i*2:(i*2)+31 ← (vA)i+64:i+79 || (vB)i+64:i+79

end

The halfword elements in the low-order half of register vA are placed, in the same order, into the even-
numbered halfword elements of register vD. The halfword elements in the low-order half of register vB are 
placed, in the same order, into the odd-numbered halfword elements of register vD.

Other registers altered:

• None

Figure 6-68 shows the usage of the vmrglh instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 332

0 5 6 10 11 15 16 20 21 31

Figure 6-68. vmrglh—Merge Four Low-Order Elements  (16-Bit)
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vmrglw vmrglw
Vector Merge Low Word (0x1000 018C)

vmrglw vD,vA,vB Form: VX 

do i=0 to 63 by 32
(vD)i*2:(i*2)+63 ← (vA)i+64:i+95 || (vB)i+64:i+95

end

The word elements in the low-order half of register vA are placed, in the same order, into the even-numbered 
word elements of register vD. The word elements in the low-order half of register vB are placed, in the same 
order, into the odd-numbered word elements of register vD.

Other registers altered:

• None

Figure 6-69 shows the usage of the vmrglw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 396

0 5 6 10 11 15 16 20 21 31

Figure 6-69. vmrglw—Merge Two Low-Order Elements  (32-Bit)
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vmsummbm vmsummbm
Vector Multiply Sum Mixed-Sign Byte Modulo (0x1000 0025)

vmsummbm vD,vA,vB,vC Form: VA

do i=0 to 127 by 32 
temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 8

prod0:15 ← (vA)i+j:i+j+7 *sui (vB)i+j:i+j+7
temp0:31 ← temp0:31 +int SignExtend(prod0:15,32)
end

(vD)i:i+31 ← temp0:31
end

For each word element in register vC, the following operations are performed in the order shown.

• Each of the four signed-integer byte elements contained in the corresponding word element of register vA 
is multiplied by the corresponding unsigned-integer byte element in register vB, producing a signed-inte-
ger 16-bit product.

• The signed-integer modulo sum of these four products is added to the signed-integer word element in 
register vC.

• The signed-integer result is placed into the corresponding word element of register vD.

Other registers altered:

• None

Figure 6-70 shows the usage of the vmsummbm instruction. Each of the sixteen elements in the registers 
vA, and vB is 8 bits in length. Each of the four elements in the registers vC and vD is 32 bits in length.

04 vD vA vB vC 37

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-70. vmsummbm—Multiply-Sum of Integer Elements  (8-Bit to 32-Bit)
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vmsumshm vmsumshm
Vector Multiply Sum Signed Halfword Modulo (0x1000 0028)

vmsumshm vD,vA,vB,vC Form: VA 

do i=0 to 127 by 32
temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *si (vB)i+j:i+j+15
temp0:31 ← temp0:31 +int prod0:31

end
(vD)i:i+31 ← temp0:31

end

For each word element in register vC, the following operations are performed in the order shown:

• Each of the two signed-integer halfword elements contained in the corresponding word element of regis-
ter vA is multiplied by the corresponding signed-integer halfword element in register vB, producing a 
signed-integer 32-bit product.

• The signed-integer modulo sum of these two products is added to the signed-integer word element in reg-
ister vC.

• The signed-integer result is placed into the corresponding word element of register vD.

Other registers altered:

• None

Figure 6-71 shows the usage of the vmsumshm instruction. Each of the eight elements in the registers vA, 
and vB is 16 bits in length. Each of the four elements in the registers vC and vD is 32 bits in length.

04 vD vA vB vC 40

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-71. vmsumshm—Multiply-Sum of Signed Integer Elements  (16-Bit to 32-Bit)
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vmsumshs vmsumshs
Vector Multiply Sum Signed Halfword Saturate (0x1000 0029)

vmsumshs vD,vA,vB,vC Form: VA

do i=0 to 127 by 32
temp0:33 ← SignExtend((vC)i:i+31,34)
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *si (vB)i+j:i+j+15
temp0:33 ← temp0:33 +int SignExtend(prod0:31,34)

end
(vD)i:i+31 ← SItoSIsat(temp0:33,32)

end

For each word element in register vC, the following operations are performed in the order shown:

• Each of the two signed-integer halfword elements in the corresponding word element of register vA is 
multiplied by the corresponding signed-integer halfword element in register vB, producing a signed-inte-
ger 32-bit product.

• The signed-integer sum of these two products is added to the signed-integer word element in register vC.

• If this intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than (-231) it satu-
rates to (-231).

• The signed-integer result is placed into the corresponding word element of register vD.

Other registers altered:

• SAT

Figure 6-72 shows the usage of the vmsumshs instruction. Each of the eight elements in the registers vA, 
and vB is 16 bits in length. Each of the four elements in the registers vC and vD is 32 bits in length.

04 vD vA vB vC 41

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-72. vmsumshs—Multiply-Sum of Signed Integer Elements  (16-Bit to 32-Bit)
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vmsumubm vmsumubm
Vector Multiply Sum Unsigned Byte Modulo (0x1000 0024)

vmsumubm vD,vA,vB,vC Form: VA 

do i=0 to 127 by 32
temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 8

prod0:15 ← (vA)i+j:i+j+7 *ui (vB)i+j:i+j+7
temp0:32 ← temp0:32 +int ZeroExtend(prod0:15,32)

end
(vD)i:i+31 ← temp0:31

end

For each word element in register vC, the following operations are performed in the order shown:

• Each of the four unsigned-integer byte elements contained in the corresponding word element of register 
vA is multiplied by the corresponding unsigned-integer byte element in register vB, producing an 
unsigned-integer 16-bit product.

• The unsigned-integer modulo sum of these four products is added to the unsigned-integer word element 
in register vC.

• The unsigned-integer result is placed into the corresponding word element of register vD.

Other registers altered:

• None

Figure 6-73 shows the usage of the vmsumubm instruction. Each of the sixteen elements in the registers vA, 
and vB is 8 bits in length. Each of the four elements in the register vC and vD is 32 bits in length.

04 vD vA vB vC 36

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-73. vmsumubm—Multiply-Sum of Unsigned Integer Elements  (8-Bit to 32-Bit)
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vmsumuhm vmsumuhm
Vector Multiply Sum Unsigned Halfword Modulo (0x1000 0026)

vmsumuhm vD,vA,vB,vC Form: VA 

do i=0 to 127 by 32
temp0:31 ← (vC)i:i+31
 do j=0 to 31 by 16

prod0:31 ← (vA)i+j:i+j+15 *ui (vB)i+j:i+j+15
temp0:31 ← temp0:31 +int prod0:31

end
(vD)i:i+31 ← temp2:33

end

For each word element in register vC, the following operations are performed in the order shown:

• Each of the two unsigned-integer halfword elements contained in the corresponding word element of reg-
ister vA is multiplied by the corresponding unsigned-integer halfword element in register vB, producing an 
unsigned-integer 32-bit product.

• The unsigned-integer sum of these two products is added to the unsigned-integer word element in regis-
ter vC.

• The unsigned-integer result is placed into the corresponding word element of register vD.

Other registers altered:

• None

Figure 6-74 shows the usage of the vmsumuhm instruction. Each of the eight elements in the registers vA, 
and vB is 16 bits in length. Each of the four elements in the registers vC and vD is 32 bits in length.

04 vD A vB vC 38

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-74. vmsumuhm—Multiply-Sum of Unsigned Integer Elements  (16-Bit to 32-Bit)
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vmsumuhs vmsumuhs
Vector Multiply Sum Unsigned Halfword Saturate (0x1000 0027)

vmsumuhs vD,vA,vB,vC Form: VA 

do i=0 to 127 by 32
temp0:33 ← ZeroExtend((vC)i:i+31,34)

do j=0 to 31 by 16
prod0:31 ← (vA)i+j:i+j+15 *ui (vB)i+j:i+j+15
temp0:33 ← temp0:33 +int ZeroExtend(prod0:31,34)

end
(vD)i:i+31 ← UItoUIsat(temp0:33,32)

end

For each word element in register vC, the following operations are performed in the order shown:

• Each of the two unsigned-integer halfword elements contained in the corresponding word element of reg-
ister vA is multiplied by the corresponding unsigned-integer halfword element in register vB, producing an 
unsigned-integer 32-bit product.

• The sum of the two 32-bit unsigned-integer products is added to the unsigned-integer word element in 
register vC.

• If the intermediate result is greater than 232 - 1, it saturates to 232 - 1. If saturation occurs, the SAT bit is 
set.

• The unsigned-integer result is placed into the corresponding word element of register vD.

Other registers altered:

• SAT

Figure 6-75 shows the usage of the vmsumuhs instruction. Each of the eight elements in the registers vA, 
and vB is 16 bits in length. Each of the four elements in the registers vC and vD is 32 bits in length.

04 vD vA vB vC 39

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-75. vmsumuhs—Multiply-Sum of Unsigned Integer Elements (16-Bit to 32-Bit)
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vmulesb vmulesb
Vector Multiply Even Signed Byte (0x1000 0308)

vmulesb vD,vA,vB Form: VX 

do i=0 to 127 by 16
prod0:15 ← (vA)i:i+7 *si (vB)i:i+7
(vD)i:i+15 ← prod0:15

end

Each even-numbered signed-integer byte element in register vA is multiplied by the corresponding signed-
integer byte element in register vB. The eight 16-bit signed-integer products are placed, in the same order, 
into the eight halfwords of register vD.

Other registers altered:

• None

Figure 6-76 shows the usage of the vmulesb instruction. Each of the sixteen elements in the registers vA, 
and vB is 8 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD vA vB 776

0 5 6 10 11 15 16 20 21 31

Figure 6-76. vmulesb—Even Multiply of Eight Signed Integer Elements  (8-Bit)
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vmulesh vmulesh
Vector Multiply Even Signed Halfword (0x1000 0348)

vmulesh vD,vA,vB Form: VX 

do i=0 to 127 by 32
prod0:31 ← (vA)i:i+15 *si (vB)i:i+15
(vD)i:i+31 ← prod0:31

end

Each even-numbered signed-integer halfword element in register vA is multiplied by the corresponding 
signed-integer halfword element in register vB. The four 32-bit signed-integer products are placed, in the 
same order, into the four word elements of register vD.

Other registers altered:

• None

Figure 6-77 shows the usage of the vmulesh instruction. Each of the eight elements in the registers vA and 
vB is 16 bits in length. Each of the four elements in the register vD is 32 bits in length.

04 vD vA vB 840

0 5 6 10 11 15 16 20 21 31

Figure 6-77. vmulesb—Even Multiply of Four Signed Integer Elements  (16-Bit)
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vmuleub vmuleub
Vector Multiply Even Unsigned Byte (0x1000 0208)

vmuleub vD,vA,vB Form: VX 

do i=0 to 127 by 16
prod0:15 ← (vA)i:i+7 *ui (vB)i:i+7
(vD)i:i+15 ← prod0:15

end

Each even-numbered unsigned-integer byte element in register vA is multiplied by the corresponding 
unsigned-integer byte element in register vB. The eight 16-bit unsigned-integer products are placed, in the 
same order, into the eight halfword elements of register vD.

Other registers altered:

• None

Figure 6-78 shows the usage of the vmuleub instruction. Each of the sixteen elements in the registers vA 
and vB is 8 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD vA vB 520

0 5 6 10 11 15 16 20 21 31

Figure 6-78. vmuleub—Even Multiply of Eight Unsigned Integer Elements  (8-Bit)
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vmuleuh vmuleuh
Vector Multiply Even Unsigned Halfword (0x1000 0248)

vmuleuh vD,vA,vB Form: VX 

do i=0 to 127 by 32
prod0:31 ← (vA)i:i+15 *ui (vB)i:i+15
(vD)i:i+31 ← prod0:31

end

Each even-numbered unsigned-integer halfword element in register vA is multiplied by the corresponding 
unsigned-integer halfword element in register vB. The four 32-bit unsigned-integer products are placed, in the 
same order, into the four word elements of register vD.

Other registers altered:

• None

Figure 6-79 shows the usage of the vmuleuh instruction. Each of the eight elements in the registers vA and 
vB is 16 bits in length. Each of the four elements in the register vD is 32 bits in length.

04 vD vA vB 584

0 5 6 10 11 15 16 20 21 31

Figure 6-79. vmuleuh—Even Multiply of Four Unsigned Integer Elements  (16-Bit)
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vmulosb vmulosb
Vector Multiply Odd Signed Byte (0x1000 0108)

vmulosb vD,vA,vB Form: VX 

do i=0 to 127 by 16
prod0:15 ← (vA)i+8:i+15 *si (vB)i+8:i+15
(vD)i:i+15 ← prod0:15

end

Each odd-numbered signed-integer byte element in register vA is multiplied by the corresponding signed-
integer byte element in register vB. The eight 16-bit signed-integer products are placed, in the same order, 
into the eight halfword elements in register vD.

Other registers altered:

• None

Figure 6-80 shows the usage of the vmulosb instruction. Each of the sixteen elements in the registers vA 
and vB is 8 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD vA vB 264

0 5 6 10 11 15 16 20 21 31

Figure 6-80. vmulosb—Odd Multiply of Eight Signed Integer Elements  (8-Bit)
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vmulosh vmulosh
Vector Multiply Odd Signed Halfword (0x1000 0148)

vmulosh vD,vA,vB Form: VX 

do i=0 to 127 by 32
prod0:31 ← (vA)i+16:i+31 *si (vB)i+16:i+31
(vD)i:i+31 ← prod0:31

end

Each odd-numbered signed-integer halfword element in register vA is multiplied by the corresponding 
signed-integer halfword element in register vB. The four 32-bit signed-integer products are placed, in the 
same order, into the four word elements in register vD.

Other registers altered:

• None

Figure 6-81 shows the usage of the vmuleuh instruction. Each of the eight elements in the registers vA and 
vB is 16 bits in length. Each of the four elements in the register vD is 32 bits in length.

04 vD vA vB 328

0 5 6 10 11 15 16 20 21 31

Figure 6-81. vmuleuh—Odd Multiply of Four Unsigned Integer Elements  (16-Bit)
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vmuloub vmuloub
Vector Multiply Odd Unsigned Byte (0x1000 0008)

vmuloub vD,vA,vB Form: VX 

do i=0 to 127 by 8
prod0:15 ← (vA)i+8:i+15 *ui (vB)i+n:i+15
(vD)i:i+15 ← prod0:15

end

Each odd-numbered unsigned-integer byte element in register vA is multiplied by the corresponding 
unsigned-integer byte element in register vB. The eight 16-bit unsigned-integer products are placed, in the 
same order, into the eight halfword elements in register vD.

Other registers altered:

• None

Figure 6-82 shows the usage of the vmuloub instruction. Each of the sixteen elements in the registers vA 
and vB is 8 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD vA vB 8

0 5 6 10 11 15 16 20 21 31

Figure 6-82. vmuloub—Odd Multiply of Eight Unsigned Integer Elements  (8-Bit)
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vmulouh vmulouh
Vector Multiply Odd Unsigned Halfword (0x1000 0048)

vmulouh vD,vA,vB Form: VX 

do i=0 to 127 by 16
prod0:31 ← (vA)i+16:i+31 *ui (vB)i+n:i+311
(vD)i:i+31 ← prod0:31

end

Each odd-numbered unsigned-integer halfword element in register vA is multiplied by the corresponding 
unsigned-integer halfword element in register vB. The four 32-bit unsigned-integer products are placed, in the 
same order, into the four word elements in register vD.

Other registers altered:

• None

Figure 6-83 shows the usage of the vmulouh instruction. Each of the eight elements in the registers vA and 
vB is 16 bits in length. Each of the four elements in the register vD is 32 bits in length.

04 vD vA vB 72

0 5 6 10 11 15 16 20 21 31

Figure 6-83. vmulouh—Odd Multiply of Four Unsigned Integer Elements  (16-Bit)
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vnmsubfp vnmsubfp
Vector Negative Multiply-Subtract Floating Point (0x1000 002F)

vnmsubfp vD,vA,vC,vB Form: VA 

do i=0 to 127 by 32
(vD)i:i+31 ← -RndToNearFP32(((vA)i:i+31 *fp (vC)i:i+31) -fp (vB)i:i+31)

end

Each single-precision floating-point word element in register vA is multiplied by the corresponding single-
precision floating-point word element in register vC. The corresponding single-precision floating-point word 
element in register vB is subtracted from the product. The sign of the difference is inverted. The result is 
rounded to the nearest single-precision floating-point number and placed into the corresponding word 
element in register vD.

Note:  Only one rounding occurs in this operation. Also note that a QNaN result is not negated.

Other registers altered:

• None

Figure 6-84 shows the usage of the vnmsubfp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB vC 47

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-84. vnmsubfp—Negative Multiply-Subtract of Four Floating-Point Elements  (32-Bit)
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vnor vnor 
Vector Logical NOR (0x1000 0504)

vnor vD,vA,vB Form: VX 

(vD) ← ¬((vA) | (vB))

The contents of vA are bitwise ORed with the contents of register vB and the complemented result is placed 
into register vD.

Other registers altered:

• None

Simplified mnemonics:

vnot vD, vS equivalent to vnor vD, vS, vS

Figure 6-85 shows the usage of the vnor instruction.

04 vD vA vB 1284

0 5 6 10 11 15 16 20 21 31

Figure 6-85. vnor—Bitwise NOR of 128-Bit Vector 

| 

vB

Intermediate 

vA

vD

¬



Programming Environments Manual
 
Vector/SIMD Multimedia Extension Technology   

Vector Processing Instructions

Page 224 of 329
Version 2.07c

October 26, 2006

vor vor
Vector Logical OR (0x1000 0484)

vor vD,vA,vB Form: VX 

(vD) ← (vA) | (vB)

The contents of register vA are ORed with the contents of register vB and the result is placed into register vD.

Other registers altered:

• None

Simplified mnemonics:

vmr vD, vS  equivalent to  vor vD, vS, vS

Figure 6-86 shows the usage of the vor instruction.

04 vD vA vB 1156

0 5 6 10 11 15 16 20 21 31

Figure 6-86. vor—Bitwise OR of 128-Bit Vector 
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vperm vperm
Vector Permute (0x1000 002B)

vperm vD,vA,vB,vC Form: VA 

temp0:255 ← (vA) || (vB)
do i=0 to 127 by 8
b ← (vC)i+3:i+7 || 0b000
(vD)i:i+7 ← tempb:b+7

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB. For each integer i in the range 0–15, the contents of the byte element in the source vector specified in bits 
[3–7] of byte element i in vC are placed into byte element i of register vD.

Other registers altered:

• None

Programming note: See the programming notes with the Load Vector for Shift Left (page 127) and Load 
Vector for Shift Right (page 129) instructions for examples of usage on the vperm instruction.

Figure 6-87 shows the usage of the vperm instruction. Each of the sixteen elements in the registers vA, vB, 
vC, and vD is 8 bits in length.

04 vD vA vB vC 43

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-87. vperm—Concatenate Sixteen Integer Elements  (8-Bit)
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vpkpx vpkpx
Vector Pack Pixel32 (0x1000 030E)

vpkpx vD,vA,vB Form: VX 

do i=0 to 63 by 16
(vD)i ← (vA)i*2+7
(vD)i+1:i+5 ← (vA)(i*2)+8:(i*2)+12
(vD)i+6:i+10 ← (vA)(i*2)+16:(i*2)+20
(vD)i+11:i+15← (vA)(i*2)+24:(i*2)+28
(vD)i+64 ← (vB)(i*2)+7
(vD)i+65:i+69← (vB)(i*2)+8:(i*2)+12
(vD)i+70:i+74← (vB)(i*2)+16:(i*2)+20
(vD)i+75:i+79← (vB)(i*2)+24:(i*2)+28

end

The source vector is the concatenation of the contents of register vA followed by the contents of register vB. 
Each word element in the source vector is packed to produce a 16-bit value as described below and placed 
into the corresponding halfword element of vD. A word is packed to 16 bits by concatenating, in order, the 
following bits.

• bit [7] of the first byte (bit [7] of the word)

• bits [0–4] of the second byte (bits [8–12] of the word)

• bits [0–4] of the third byte (bits [16–20] of the word)

• bits [0–4] of the fourth byte (bits [24–28] of the word)

Other registers altered:

• None

Programming note: Each source word can be considered to be a 32-bit pixel consisting of four 8-bit chan-
nels. Each target halfword can be considered to be a 16-bit pixel consisting of one 1-bit channel and three 5-
bit channels. A channel can be used to specify the intensity of a particular color, such as red, green, or blue, 
or to provide other information needed by the application.

Figure 6-88 shows the usage of the vpkpx instruction. Each of the four elements in the registers vA, vB, and 
vD is 32 bits in length. 

04 vD vA vB 782

0 5 6 10 11 15 16 20 21 31

Figure 6-88. vpkpx—Pack Eight Elements (32-Bit) to Eight Elements (16-Bit) 
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vpkshss vpkshss
Vector Pack Signed Halfword Signed Saturate (0x1000 018E)

vpkshss vD,vA,vB Form: VX 

do i=0 to 63 by 8
(vD)i:i+7 ← SItoSIsat((vA)i*2:(i*2)+15,8)
(vD)i+64:i+71← SItoSIsat((vB)i*2:(i*2)+15,8)

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB.

Each signed integer halfword element in the source vector is converted to an 8-bit signed integer. If the value 
of the element is greater than (2 7 - 1) it saturates to (27 - 1) and if the value is less than (-27) it saturates 
to (-27). If saturation occurs, the SAT bit is set. The result is placed into the corresponding byte element of 
register vD.

Other registers altered:

• SAT

Figure  shows the usage of the vpkshss instruction. Each of the eight elements in the registers vA and vB is 
16 bits in length. Each of the sixteen elements in the register vD is 8 bits in length.

04 vD vA vB 398

0 5 6 10 11 15 16 20 21 31

vpkshss—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Signed Integer Elements (8-Bit)
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vpkshus vpkshus
Vector Pack Signed Halfword Unsigned Saturate (0x1000 010E)

vpkshus vD,vA,vB Form: VX 

do i=0 to 63 by 8
(vD)i:i+7 ← SItoUIsat((vA)i*2:(i*2)+7,8)
(vD)i+64:i+71← SItoUIsat((vB)i*2:(i*2)+7,8)

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB.

Each signed integer halfword element in the source vector is converted to an 8-bit unsigned integer. If the 
value of the element is greater than (28 - 1) it saturates to (28 - 1) and if the value is less than ‘0’ the result 
saturates to ‘0’. If saturation occurs, the SAT bit is set. The result is placed into the corresponding byte 
element of register vD.

Other registers altered:

• SAT

Figure 6-89 shows the usage of the vpkshus instruction. Each of the eight elements in the registers vA and 
vB is 16 bits in length. Each of the sixteen elements in the register vD is 8 bits in length.

04 vD vA vB 270

0 5 6 10 11 15 16 20 21 31

Figure 6-89. vpkshus—Pack Sixteen Signed Integer Elements (16-Bit) to Sixteen Unsigned Integer 
Elements (8-Bit) 
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vpkswss vpkswss
Vector Pack Signed Word Signed Saturate (0x1000 01CE)

vpkswss vD,vA,vB Form: VX

do i=0 to 63 by 16
(vD)i:i+15 ← SItoSIsat((vA)i*2:(i*2)+31,16)
(vD)i+64:i+79← SItoSIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB.

Each signed integer word element in the source vector is converted to a 16-bit signed integer halfword. If the 
value of the element is greater than (215 - 1) the result saturates to (215 - 1) and if the value is less than (-215) 
the result saturates to (-215). If saturation occurs, the SAT bit is set. The result is placed into the corre-
sponding halfword element of register vD.

Other registers altered:

• SAT

Figure 6-90 shows the usage of the vpkswss instruction. Each of the four elements in the registers vA and 
vB is 32 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD vA vB 462

0 5 6 10 11 15 16 20 21 31

Figure 6-90. vpkswss—Pack Eight Signed Integer Elements (32-Bit) to Eight Signed Integer Elements (16-
Bit) 
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vpkswus vpkswus
Vector Pack Signed Word Unsigned Saturate (0x1000 014E)

vpkswus vD,vA,vB Form: VX 

do i=0 to 63 by 16
(vD)i:i+15 ← SItoUIsat((vA)i*2:(i*2)+31,16)
(vD)i+64:i+79← SItoUIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB.

Each signed integer word element in the source vector is converted to a 16-bit unsigned integer. If the value 
of the element is greater than (216 - 1) the result saturates to (216 - 1) and if the value is less than ‘0’ the result 
saturates to ‘0’. If saturation occurs, the SAT bit is set. The result is placed into the corresponding halfword 
element of register vD.

Other registers altered:

• SAT

Figure 6-91 shows the usage of the vpkswus instruction. Each of the four elements in the registers vA and 
vB is 32 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD vA vB 334

0 5 6 10 11 15 16 20 21 31

Figure 6-91. vpkswus—Pack Eight Signed Integer Elements (32-Bit) to Eight Unsigned Integer Elements 
(16-Bit) 
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vpkuhum vpkuhum
Vector Pack Unsigned Halfword Unsigned Modulo (0x1000 000E)

vpkuhum vD,vA,vB Form: VX 

do i=0 to 63 by 8
(vD)i:i+7 ← (vA)(i*2)+8:(i*2)+15
(vD)i+64:i+71← (vB)(i*2)+8:(i*2)+15

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB.

The low-order byte of each halfword element in the source vector is placed into the corresponding byte 
element of register vD.

Other registers altered:

• None

Figure 6-92 shows the usage of the vpkuhum instruction. Each of the eight elements in the registers vA and 
vB is 16 bits in length. Each of the sixteen elements in the register vD is 8 bits in length.

04 vD vA vB 14

0 5 6 10 11 15 16 20 21 31

Figure 6-92. vpkuhum—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen Unsigned Integer 
Elements (8-Bit) 
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vpkuhus vpkuhus
Vector Pack Unsigned Halfword Unsigned Saturate (0x1000 008E)

vpkuhus vD,vA,vB Form: VX

do i=0 to 63 by 8
(vD)i:i+7 ← UItoUIsat((vA)i*2:(i*2)+15,8)
(vD)i+64:i+71← UItoUIsat((vB)i*2:(i*2)+15,8)

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB.

Each unsigned integer halfword element in the source vector is converted to an 8-bit unsigned integer. If the 
value of the element is greater than (28 - 1) the result saturates to (28 - 1). If saturation occurs, the SAT bit is 
set. The result is placed into the corresponding byte element of register vD.

Other registers altered:

• SAT

Figure 6-93 shows the usage of the vpkuhus instruction. Each of the eight elements in the vectors, vA, and 
vB, is 16 bits in length. Each of the sixteen elements in the vector vD, is 8 bits in length.

04 vD vA vB 142

0 5 6 10 11 15 16 20 21 31

Figure 6-93. vpkuhus—Pack Sixteen Unsigned Integer Elements (16-Bit) to Sixteen Unsigned Integer 
Elements (8-Bit) 
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vpkuwum vpkuwum
Vector Pack Unsigned Word Unsigned Modulo (0x1000 004E)

vpkuwum vD,vA,vB Form: VX 

do i=0 to 63 by 16
(vD)i:i+15 ← (vA)(i*2)+16:(i*2)+31
(vD)i+64:i+79← (vB)(i*2)+16:(i*2)+31

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB.

The low-order halfword of each word element in the source vector is placed into the corresponding halfword 
element of register vD.

Other registers altered:

• None

Figure 6-94 shows the usage of the vpkuwum instruction. Each of the four elements in the registers vA and 
vB is 32 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD vA vB 78

0 5 6 10 11 15 16 20 21 31

Figure 6-94. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned Integer Elements 
(16-Bit) 

vA vB

vD



Programming Environments Manual
 
Vector/SIMD Multimedia Extension Technology   

Vector Processing Instructions

Page 234 of 329
Version 2.07c

October 26, 2006

vpkuwus vpkuwus
Vector Pack Unsigned Word Unsigned Saturate (0x1000 00CE)

vpkuwus vD,vA,vB Form: VX 

do i=0 to 63 by 16
(vD)i:i+15 ← UItoUIsat((vA)i*2:(i*2)+31,16)
(vD)i+64:i+79← UItoUIsat((vB)i*2:(i*2)+31,16)

end

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB.

Each unsigned integer word element in the source vector is converted to a 16-bit unsigned integer. If the 
value of the element is greater than (216 - 1) the result saturates to (216 - 1). If saturation occurs, the SAT bit 
is set. The result is placed into the corresponding halfword element of register vD.

Other registers altered:

• SAT

Figure 6-95 shows the usage of the vpkuwus instruction. Each of the four elements in the registers vA and 
vB is 32 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD vA vB 206

0 5 6 10 11 15 16 20 21 31

Figure 6-95. vpkuwum—Pack Eight Unsigned Integer Elements (32-Bit) to Eight Unsigned Integer Elements 
(16-Bit) 

vA vB

vD
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vrefp vrefp
Vector Reciprocal Estimate Floating Point (0x1000 010A)

vrefp vD,vB Form: VX 

do i=0 to 127 by 32
x ← (vB)i:i+31
(vD)i:i+31 ← 1/x

end

The single-precision floating-point estimate of the reciprocal of each single-precision floating-point element in 
register vB is placed into the corresponding element of register vD.

For results that are not a +0, -0, +∞, -∞, or QNaN, the estimate has a relative error in precision no greater than 
one part in 4096, that is:

where x is the value of the element in register vB. Note that the value placed into the element of register vD 
may vary between implementations, and between different executions on the same implementation.

Operation with various special values of the element in vB is summarized below. 

If VSCR[NJ] =‘1’, every denormalized operand element is truncated to a ‘0’ of the same sign before the oper-
ation is carried out, and each denormalized result element truncates to a ‘0’ of the same sign.

Other registers altered:

• None

Figure 6-96 on page 236 shows the usage of the vrefp instruction. Each of the four elements in the registers 
vB and vD is 32 bits in length.

04 vD 0 0 0 0 0 vB 266

0 5 6 10 11 15 16 20 21 31

Table 6-7. vrefp—Special Values of the Element in vB 

Value Result

-∞ -0

-0 -∞

+0 +∞

+∞ +0

NaN QNaN

estimate 1 x⁄–
1 x⁄

------------------------------------------
1

4096
-------------≤
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Figure 6-96. vrefp—Reciprocal Estimate of Four Floating-Point Elements  (32-Bit)

1 / x1 / x1 /x1 /x

vB

vD

x xxx
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vrfim vrfim
Vector Round to Floating-Point Integer toward Minus Infinity (0x1000 02CA)

vrfim vD,vB Form: VX 

do i=0 to 127 by 32
(vD)i:i+31 ← RndToFPInt32Floor((vB)i:i+31)

end

Each single-precision floating-point word element in register vB is rounded to a single-precision floating-point 
integer, using the rounding mode Round toward -Infinity, and placed into the corresponding word element of 
register vD.

Note:  The result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-97 shows the usage of the vrfim instruction. Each of the four elements in the registers vB and vD is 
32 bits in length.

04 vD 0 0 0 0 0 vB 714

0 5 6 10 11 15 16 20 21 31

Figure 6-97. vrfim— Round to Minus Infinity of Four Floating-Point Integer Elements (32-Bit)

RndToFPInt32FloorRndToFPInt32FloorRndToFPInt32FloorRndToFPInt32Floor

vB

vD
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vrfin vrfin
Vector Round to Floating-Point Integer Nearest (0x1000 020A)

vrfin vD,vB Form: VX 

do i=0 to 127 by 32
(vD)i:i+31 ← RndToFPInt32Near((vB)i:i+31)

end

Each single-precision floating-point word element in register vB is rounded to a single-precision floating-point 
integer, using the rounding mode Round to Nearest, and placed into the corresponding word element of 
register vD.

Note:  The result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-98 shows the usage of the vrfin instruction. Each of the four elements in the registers vB and vD is 
32 bits in length.

04 vD 0 0 0 0 0 vB 522

0 5 6 10 11 15 16 20 21 31

Figure 6-98. vrfin—Nearest Round to Nearest of Four Floating-Point Integer Elements  (32-Bit)

RndToFPInt32NearRndToFPInt32NearRndToFPInt32NeaRndToFPInt32Near

vB

vD
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vrfip vrfip
Vector Round to Floating-Point Integer toward Plus Infinity (0x1000 028A)

vrfip vD,vB Form: VX 

do i=0 to 127 by 32
(vD)i:i+31 ← RndToFPInt32Ceil((vB)i:i+31)

end

Each single-precision floating-point word element in vB is rounded to a single-precision floating-point integer, 
using the rounding mode Round toward +Infinity, and placed into the corresponding word element of vD.

Note:  The result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-99 shows the usage of the vrfip instruction. Each of the four elements in the vectors vB and vD is 32 
bits in length.

04 vD 0 0 0 0 0 vB 650

0 5 6 10 11 15 16 20 21 31

Figure 6-99. vrfip—Round to Plus Infinity of Four Floating-Point Integer Elements  (32-Bit)

RndToFPInt32CeilRndToFPInt32CeilRndToFPInt32CeilRndToFPInt32Ceil
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vrfiz vrfiz
Vector Round to Floating-Point Integer toward Zero (0x1000 024A)

vrfiz vD,vB Form: VX 

do i=0 to 127 by 32
(vD)i:i+31 ← RndToFPInt32Trunc((vB)i:i+31)

end

Each single-precision floating-point word element in register vB is rounded to a single-precision floating-point 
integer, using the rounding mode Round toward Zero, and placed into the corresponding word element of 
register vD.

Note:  The result is independent of VSCR[NJ].

Other registers altered:

• None

Figure 6-100 shows the usage of the vrfiz instruction. Each of the four elements in the registers vB and vD is 
32 bits in length.

04 vD 0 0 0 0 0 vB 586

0 5 6 10 11 15 16 20 21 31

Figure 6-100. vrfiz—Round-to-Zero of Four Floating-Point Integer Elements  (32-Bit)

RndToFPInt32TruncRndToFPInt32TruncRndToFPInt32TruncRndToFPInt32Trunc
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vrlb vrlb
Vector Rotate Left Integer Byte (0x1000 0004)

vrlb vD,vA,vB Form: VX 

do i=0 to 127 by 8
sh ← (vB)i+5:i+7
(vD)i:i+7 ← ROTL((vA)i:i+7,sh)

end

Each element is a byte. Each byte element in register vA is rotated left by the number of bits specified in the 
low-order 3 bits of the corresponding byte element in register vB. The result is placed into the corresponding 
byte element of register vD.

Other registers altered:

• None

Figure 6-101 shows the usage of the vrlb instruction. Each of the sixteen elements in the registers vA, vB, 
and vD is 8 bits in length.

04 vD vA vB 4

0 5 6 10 11 15 16 20 21 31

Figure 6-101. vrlb—Left Rotate of Sixteen Integer Elements  (8-Bit)

vA

vD

vB
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vrlh vrlh
Vector Rotate Left Integer Halfword (0x1000 0044)

vrlh vD,vA,vB Form: VX 

do i=0 to 127 by 16
sh ← (vB)i+12:i+15
(vD)i:i+15 ← ROTL((vA)i:i+15,sh)

end

Each element is a halfword. Each halfword element in register vA is rotated left by the number of bits speci-
fied in the low-order 4 bits of the corresponding halfword element in register vB. The result is placed into the 
corresponding halfword element of register vD.

Other registers altered:

• None

Figure 6-102 shows the usage of the vrlh instruction. Each of the eight elements in the registers vA, vB, and 
vD is 16 bits in length.

04 vD vA vB 68

0 5 6 10 11 15 16 20 21 31

Figure 6-102. vrlh—Left Rotate of Eight Integer Elements  (16-Bit)
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vrlw vrlw
Vector Rotate Left Integer Word (0x1000 0084)

vrlw vD,vA,vB Form: VX

do i=0 to 127 by 32
sh ← (vB)i+27:i+31
(vD)i:i+31 ← ROTL((vA)i:i+31,sh)

end

Each element is a word. Each word element in register vA is rotated left by the number of bits specified in the 
low-order 5 bits of the corresponding word element in register vB. The result is placed into the corresponding 
word element of register vD.

Other registers altered:

• None

Figure 6-103 shows the usage of the vrlw instruction. Each of the four elements in the registers vA, vB, and 
vD is 32 bits in length.

04 vD vA vB 132

0 5 6 10 11 15 16 20 21 31

Figure 6-103. vrlw—Left Rotate of Four Integer Elements  (32-Bit)
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vrsqrtefp vrsqrtefp
Vector Reciprocal Square Root Estimate Floating Point (0x1000 014A)

vrsqrtefp vD,vB Form: VX 

do i=0 to 127 by 32
x ← (vB)i:i+31
(vD)i:i+31 ← 1 ÷fp (Ðfp(x))

end

The single-precision estimate of the reciprocal of the square root of each single-precision element in register 
vB is placed into the corresponding word element of register vD. The estimate has a relative error in precision 
no greater than one part in 4096, as explained below:

where x is the value of the element in vB. Note that the value placed into the element of register vD may vary 
between implementations and between different executions on the same implementation. Operation with 
various special values of the element in register vB is summarized below. 

Other registers altered:

• None

Figure 6-104 shows the usage of the vrsqrtefp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD 0 0 0 0 0 vB 330

0 5 6 10 11 15 16 20 21 31

Table 6-8. vrsqrtefp—Special Values 

Value in vB Result

-∞ QNaN

less than 0 QNaN

-0 -∞

+0 +∞

+∞ +0

NaN QNaN

Figure 6-104. vrsqrtefp—Reciprocal Square Root Estimate of Four Floating-Point Elements  (32-Bit)

estimate 1 x⁄–

1 x⁄
-----------------------------------------------

1
4096
-------------≤

1 / √x

vB

vD
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vsel vsel
Vector Conditional Select (0x1000 002A)

vsel vD,vA,vB,vC Form: VA 

do i=0 to 127
if (vC)i=0 then vDi ← (vA)i
 else (vD)i ← (vB)i

end

For each bit in register vC that contains the value ‘0’, the corresponding bit in register vA is placed into the 
corresponding bit of register vD. For each bit in register vC that contains the value ‘1’, the corresponding bit in 
register vB is placed into the corresponding bit of register vD.

Other registers altered:

• None

Figure 6-105 shows the usage of the vsel instruction. Each of the registers vA, vB, vC, and vD is 128 bits in 
length.

04 vD vA vB vC 42

0 5 6 10 11 15 16 20 21 25 26 31

Figure 6-105. vsel—Bitwise Conditional Select of Vector Contents  (128-bit)

vB

vA

vC0 1 0 0 1 1 0 0 •  •  •  •  •  •  •  •  •  •  •

vD

•  •  •  •  •  •  •  •  •  •  •

•  •  •  •  •  •  •  •  •  •  •

•  •  •  •  •  •  •  •  •  •  •

•  •  •  •  •  •  •  •  •  •  •  •
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vsl vsl
Vector Shift Left (0x1000 01C4)

vsl vD,vA,vB Form: VX 

sh ← (vB)125:127
t ← 1
do i = 0 to 127 by 8
t ← t & ((vB)i+5:i+7 = sh)

end
if t = 1 then (vD) ← (vA) <<ui sh
else (vD) ← undefined

Let sh be equal to the contents of bits [125-127] of register vB; sh is the shift count in bits (0 ≤ sh ≤ 7). 

The contents of register vA are shifted left by sh bits. Bits shifted out of bit [0] are lost. Zeros are supplied to 
the vacated bits on the right. The result is placed into register vD.

The contents of the low-order three bits of all byte elements in register vB must be identical to vB[125–127]; 
otherwise the value placed into register vD is undefined.

Other registers altered:

• None

Figure 6-106 shows the usage of the vsl instruction. 

04 vD vA vB 452

0 5 6 10 11 15 16 20 21 31

Figure 6-106. vsl—Shift Bits Left in Vector  (128-Bit)
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vslb vslb
Vector Shift Left Integer Byte (0x1000 0104)

vslb vD,vA,vB Form: VX 

do i=0 to 127 by 8
sh ← (vB)i+5):i+7
(vD)i:i+7 ← (vA)i:i+7 <<ui sh

end

Each element is a byte. Each byte element in register vA is shifted left by the number of bits specified in the 
low-order 3 bits of the corresponding element in register vB. Bits shifted out of bit [0] of the byte element are 
lost. Zeros are supplied to the vacated bits on the right. The result is placed into the corresponding byte 
element of register vD.

Other registers altered:

• None

Figure 6-107 shows the usage of the vslb instruction. Each of the sixteen elements in the registers vA, vB, 
and vD is 8 bits in length.

04 vD vA vB 260

0 5 6 10 11 15 16 20 21 31

Figure 6-107. vslb—Shift Bits Left in Sixteen Integer Elements  (8-Bit)
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vsldoi vsldoi
Vector Shift Left Double by Octet Immediate (0x1000 002C)

vsldoi vD, vA, vB, SHB Form: VA 

(vD) ← ((vA) || (vB)) <<ui (SHB || 0b000)

Let the source vector be the concatenation of the contents of register vA followed by the contents of register 
vB. Bytes SHB:SHB+15 of the source vector are placed into register vD.

Other registers altered:

• None

Figure 6-107 shows the usage of the vsldoi instruction. Each of the sixteen elements in the registers vA, vB, 
and vD is 8 bits in length.

04 vD vA vB 0 SHB 44

0 5 6 10 11 15 16 20 21 22 25 26 31

Figure 6-108. vsldoi—Shift Left by Bytes Specified 
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vslh vslh
Vector Shift Left Integer Halfword (0x1000 0144)

vslh vD,vA,vB Form: VX 

do i=0 to 127 by 16
sh ← (vB)i+12:i+15
(vD)i:i+15 ← (vA)i:i+15 <<ui sh

end

Each element is a halfword. Each halfword element in register vA is shifted left by the number of bits speci-
fied in the low-order 4 bits of the corresponding halfword element in register vB. Bits shifted out of bit [0] of 
the halfword element are lost. Zeros are supplied to the vacated bits on the right. The result is placed into the 
corresponding halfword element of register vD.

Other registers altered:

• None

Figure 6-109 shows the usage of the vslh instruction. Each of the eight elements in the registers vA, vB, and 
vD is 16 bits in length.

04 vD vA vB 324

0 5 6 10 11 15 16 20 21 31

Figure 6-109. vslh—Shift Bits Left in Eight Integer Elements  (16-Bit)
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vslo vslo
Vector Shift Left by Octet (0x1000 040C)

vslo vD,vA,vB Form: VX 

shb ← (vB)121:124
(vD) ← (vA) <<ui (shb || 0b000)

The contents of register vA are shifted left by the number of bytes specified in vB[121–124]. Bytes shifted out 
of byte [0] are lost. Zeros are supplied to the vacated bytes on the right. The result is placed into register vD.

Other registers altered:

• None

Figure 6-110 shows the usage of the vslo instruction.

04 vD vA vB 1036

0 5 6 10 11 15 16 20 21 31

Figure 6-110. vslo—Left Byte Shift of Vector  (128-Bit)
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vslw vslw
Vector Shift Left Integer Word (0x1000 0184)

vslw vD,vA,vB Form: VX 

do i=0 to 127 by 32
sh ← (vB)i+27:i+31
(vD)i:i+31 ← (vA)i:i+31 <<ui sh

end

Each element is a word. Each word element in register vA is shifted left by the number of bits specified in the 
low-order 5 bits of the corresponding word element in register vB. Bits shifted out of bit [0] of the word 
element are lost. Zeros are supplied to the vacated bits on the right. The result is placed into the corre-
sponding word element of register vD.

Other registers altered:

• None

Figure 6-111 shows the usage of the vslw instruction. Each of the four elements in the registers vA, vB, and 
vD is 32 bits in length.

04 vD vA vB 388

0 5 6 10 11 15 16 20 21 31

Figure 6-111. vslw—Shift Bits Left in Four Integer Elements  (32-Bit)
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vspltb vspltb
Vector Splat Byte (0x1000 020C)

vspltb vD,vB,UIMM Form: VX 

b ← UIMM*8
do i=0 to 127 by 8
(vD)i:i+7 ← (vB)b:b+7

end

The contents of byte element UIMM in register vB are replicated into each byte element of vD.

Other registers altered:

• None

Programming note: The vector splat instructions can be used in preparation for performing arithmetic for 
which one source vector is to consist of elements that all have the same value (for example, multiplying all 
elements of a vector register by a constant).

Figure 6-112 shows the usage of the vspltb instruction. Each of the sixteen elements in the registers vB and 
vD is 8 bits in length.

04 vD / UIMM vB 524

0 5 6 10 11 12 15 16 20 21 31

Figure 6-112. vspltb—Copy Contents to Sixteen Elements  (8-Bit)

vB

vD
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vsplth vsplth
Vector Splat Halfword (0x1000 024C)

vsplth vD,vB,UIMM Form: VX 

b ← UIMM*16
do i=0 to 127 by 16
(vD)i:i+15 ← (vB)b:b+15

end

The contents of halfword element UIMM in register vB are replicated into each halfword element of register 
vD.

Other registers altered:

• None

Programming note: The vector splat instructions can be used in preparation for performing arithmetic for 
which one source vector is to consist of elements that all have the same value (for example, multiplying all 
elements of a vector register by a constant).

Figure 6-16 shows the usage of the vsplth instruction. Each of the eight elements in the registers vB and vD 
is 16 bits in length.

04 vD // UIMM vB 588

0 5 6 10 11 12 13 15 16 20 21 31

Figure 6-113. vsplth—Copy Contents to Eight Elements  (16-Bit)
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vD
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vspltisb vspltisb
Vector Splat Immediate Signed Byte (0x1000 030C)

vspltisb vD,SIMM Form: VX 

do i=0 to 127 by 8
(vD)i:i+7 ← SignExtend(SIMM,8)

end

Each element of vspltisb is a byte. The value of the SIMM field, sign-extended to 8 bits, is replicated into 
each byte element of register vD.

Other registers altered:

• None

Figure 6-114 shows the usage of the vspltisb instruction. Each of the sixteen elements in the register vD is 
8 bits in length.

04 vD SIMM 0 0 0 0 0 780

0 5 6 10 11 15 16 20 21 31

Figure 6-114. vspltisb—Copy Value into Sixteen Signed Integer Elements  (8-Bit)

SIMM

vD
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vspltish vspltish
Vector Splat Immediate Signed Halfword (0x1000 034C)

vspltish vD,SIMM Form: VX

do i=0 to 127 by 16
(vD)i:i+15 ← SignExtend(SIMM,16)

end

Each element of vspltish is a halfword. The value of the SIMM field, sign-extended to 16 bits, is replicated 
into each halfword element of register vD.

Other registers altered:

• None

Figure 6-115 shows the usage of the vspltish instruction. Each of the eight halfword elements in the registers 
vA, vB, and vD is 16 bits in length.

04 vD SIMM 0 0 0 0 0 844

0 5 6 10 11 15 16 20 21 31

Figure 6-115. vspltish—Copy Value to Eight Signed Integer Elements  (16-Bit)

SIMM

vD
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vspltisw vspltisw
Vector Splat Immediate Signed Word (0x1000 038C)

vspltisw vD,SIMM Form: VX 

do i=0 to 127 by 32
(vD)i:i+31 ← SignExtend(SIMM,32)

end

Each element of vspltisw is a word. The value of the SIMM field, sign-extended to 32 bits, is replicated into 
each element of register vD.

Other registers altered:

• None

Figure 6-116 shows the usage of the vspltisw instruction. Each of the four elements in the register vD is 
32 bits in length.

04 vD SIMM 0 0 0 0 0 908

0 5 6 10 11 15 16 20 21 31

Figure 6-116. vspltisw—Copy Value to Four Signed Elements  (32-Bit)

vD

sign extended SIMM
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vspltw vspltw
Vector Splat Word (0x1000 028C)

vspltw vD,vB,UIMM Form: VX 

b ← UIMM*32
do i=0 to 127 by 32
(vD)i:i+31 ← (vB)b:b+31

end

Each element of vspltw is a word. The contents of element UIMM in register vB are replicated into each word 
element of register vD.

Other registers altered:

• None

Programming note: The Vector Splat instructions can be used in preparation for performing arithmetic for 
which one source vector is to consist of elements that all have the same value (for example, multiplying all 
elements of a vector register by a constant).

Figure 6-117 shows the usage of the vspltw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD /// UIMM vB 652

0 5 6 10 11 13 14 15 16 20 21 31

Figure 6-117. vspltw—Copy contents to Four Elements  (32-Bit)

vD

vB



Programming Environments Manual
 
Vector/SIMD Multimedia Extension Technology   

Vector Processing Instructions

Page 258 of 329
Version 2.07c

October 26, 2006

vsr vsr
Vector Shift Right (0x1000 02C4)

vsr vD,vA,vB Form: VX

sh ← (vB)125:127
t ← 1
do i = 0 to 127 by 8
t ← t & ((vB)i+5:i+7 = sh)

end
if t = 1 then (vD) ← (vA) >>ui sh
else(vD) ← undefined

Let sh be equal to the contents of bits [125-127] of register vB; sh is the shift count in bits (0 ≤ sh ≤ 7). The 
contents of register vA are shifted right by sh bits. Bits shifted out of bit [127] are lost. Zeros are supplied to 
the vacated bits on the left. The result is placed into register vD.

The contents of the low-order three bits of all byte elements in register vB must be identical to vB[125-127]; 
otherwise the value placed into register vD is undefined.

Other registers altered:

• None

Programming notes: A pair of vslo and vsl or vsro and vsr instructions, specifying the same shift count 
register, can be used to shift the contents of a vector register left or right by the number of bits [0–127] speci-
fied in the shift count register. The following example shifts the contents of vX left by the number of bits spec-
ified in vY and places the result into vZ.

vslo     VZ,VX,VY
vsl      VZ,VZ,VY

A double-register shift by a dynamically specified number of bits [0–127] can be performed in six instructions. 
The following example shifts (vW) || (vX) left by the number of bits specified in vY and places the high-order 
128 bits of the result into vZ.

vslo     t1,VW,VY  #shift high-order reg left
vsl      t1,t1,VY
vsububm  t3,V0,VY  #adjust shift count ((V0)=0)
vsro     t2,VX,t3  #shift low-order reg right
vsr      t2,t2,t3
vor      VZ,t1,t2  #merge to get final result

Figure 6-118 shows the usage of the vsr instruction. Each of the sixteen elements in the registers vA, vB, 
and vD is 8 bits in length.

04 vD vA vB 708

0 5 6 10 11 15 16 20 21 31
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Figure 6-118. vsr—Shift Bits Right for Vectors  (128-Bit)
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vsrab vsrab
Vector Shift Right Algebraic Byte (0x1000 0304)

vsrab vD,vA,vB Form: VX 

do i=0 to 127 by 8
sh ← (vB)i+2:i+7
(vD)i:i+7 ← (vA)i:i+7 >>si sh

end

Each element is a byte. Each byte element in register vA is shifted right by the number of bits specified in the 
low-order 3 bits of the corresponding byte element in register vB. Bits shifted out of bit [7] of the element are 
lost. Bit [0] of the element is replicated to fill the vacated bits on the left. The result is placed into the corre-
sponding byte element of register vD.

Other registers altered:

• None

Figure 6-119 shows the usage of the vsrab instruction. Each of the sixteen elements in the registers vA and 
vD is 8 bits in length.

04 vD vA vB 772

0 5 6 10 11 15 16 20 21 31

Figure 6-119. vsrab—Shift Bits Right in Sixteen Integer Elements  (8-Bit)
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vsrah vsrah
Vector Shift Right Algebraic Halfword (0x1000 0344)

vsrah vD,vA,vB Form: VX 

do i=0 to 127 by 16
sh ← (vB)i+12:i+15
(vD)i:i+15 ← (vA)i:i+15 >>si sh

end

Each halfword element in register vA is shifted right by the number of bits specified in the low-order 4 bits of 
the corresponding halfword element in register vB. Bits shifted out of bit [15] of the halfword element are lost. 
Bit [0] of the halfword element is replicated to fill the vacated bits on the left. The result is placed into the 
corresponding halfword element of register vD.

Other registers altered:

• None

Figure 6-120 shows the usage of the vsrah instruction. Each of the eight elements in the registers vA and vD 
is 16 bits in length.

04 vD vA vB 836

0 5 6 10 11 15 16 20 21 31

Figure 6-120. vsrah—Shift Bits Right for Eight Integer Elements  (16-Bit)
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vsraw vsraw
Vector Shift Right Algebraic Word (0x1000 0384)

vsraw vD,vA,vB Form: VX 

do i=0 to 127 by 32
sh ← (vB)i+27:i+31
(vD)i:i+31 ← (vA)i:i+31 >>si sh

end

Each element is a word. Each element in register vA is shifted right by the number of bits specified in the low-
order 5 bits of the corresponding element in register vB. Bits shifted out of bit [31] of the element are lost. Bit 
[0] of the element is replicated to fill the vacated bits on the left. The result is placed into the corresponding 
element of register vD.

Other registers altered:

• None

Figure 6-121 shows the usage of the vsraw instruction. Each of the four elements in the register vA, vB, and 
vD is 32 bits in length.

04 vD vA vB 900

0 5 6 10 11 15 16 20 21 31

Figure 6-121. vsraw—Shift Bits Right in Four Integer Elements  (32-Bit)
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vsrb vsrb
Vector Shift Right Byte (0x1000 0204)

vsrb vD,vA,vB Form: VX 

do i=0 to 127 by 8
sh ← (vB)i+5:i+7
(vD)i:i+7 ← (vA)i:i+7 >>ui sh

end

Each element is a byte. Each element in register vA is shifted right by the number of bits specified in the low-
order 3 bits of the corresponding element in register vB. Bits shifted out of bit [7] of the element are lost. 
Zeros are supplied to the vacated bits on the left. The result is placed into the corresponding element of 
register vD.

Other registers altered:

• None

Figure 6-122 shows the usage of the vsrb instruction. Each of the sixteen elements in the registers vA and 
vD is 8 bits in length.

04 vD vA vB 516

0 5 6 10 11 15 16 20 21 31

Figure 6-122. vsrb—Shift Bits Right in Sixteen Integer Elements  (8-Bit)
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vsrh vsrh
Vector Shift Right Halfword (0x1000 0244)

vsrh vD,vA,vB Form: VX 

do i=0 to 127 by 16
sh ← (vB)i+12:i+15
(vD)i:i+15 ← (vA)i:i+15 >>ui sh

end

Each element is a halfword. Each element in register vA is shifted right by the number of bits specified in the 
low-order 4 bits of the corresponding element in register vB. Bits shifted out of bit [15] of the element are lost. 
Zeros are supplied to the vacated bits on the left. The result is placed into the corresponding element of 
register vD.

Other registers altered:

• None

Figure 6-123 shows the usage of the vsrh instruction. Each of the eight elements in the registers vA and vD 
is 16 bits in length.

04 vD vA vB 580

0 5 6 10 11 15 16 20 21 31

Figure 6-123. vsrh—Shift Bits Right for Eight Integer Elements  (16-Bit)
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vsro vsro
Vector Shift Right by Octet (0x1000 044C)

vsro vD,vA,vB Form: VX 

shb ← (vB)121:124
(vD) ← (vA) >>ui (shb || 0b000)

The contents of vA are shifted right by the number of bytes specified in vB[121–124]. Bytes shifted out of 
register vA are lost. Zeros are supplied to the vacated bytes on the left. The result is placed into register vD.

Other registers altered:

• None

04 vD vA vB 1100

0 5 6 10 11 15 16 20 21 31

Figure 6-124. vsro—Vector Shift Right Octet 
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vsrw vsrw
Vector Shift Right Word (0x1000 0284)

vsrw vD,vA,vB Form: VX 

do i=0 to 127 by 32
sh ← (vB)i+(27):i+31
(vD)i:i+31 ← (vA)i:i+31 >>ui sh

end

Each element is a word. Each element in register vA is shifted right by the number of bits specified in the low-
order 5 bits of the corresponding element in register vB. Bits shifted out of bit [31] of the element are lost. 
Zeros are supplied to the vacated bits on the left. The result is placed into the corresponding element of 
register vD.

Other registers altered:

• None

Figure 6-125 shows the usage of the vsrw instruction. Each of the four elements in the registers vA, vB, and 
vD is 32 bits in length.

04 vD vA vB 644

0 5 6 10 11 15 16 20 21 31

Figure 6-125. vsrw—Shift Bits Right in Four Integer Elements  (32-Bit)
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vsubcuw vsubcuw
Vector Subtract Carryout Unsigned Word (0x1000 0580)

vsubcuw vD,vA,vB Form: VX 

do i=0 to 127 by 32
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int ¬bop0:32 +int 1
(vD)i:i+31 ← ZeroExtend(temp0,32)

end

Each unsigned-integer word element in register vB is subtracted from the corresponding unsigned-integer 
word element in register vA. The complement of the borrow out of bit [0] of the 32-bit difference is zero-
extended to 32 bits and placed into the corresponding word element of register vD.

Other registers altered:

• None

Figure 6-126 shows the usage of the vsubcuw instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 1408

0 5 6 10 11 15 16 20 21 31

Figure 6-126. vsubcuw—Subtract Carryout of Four Unsigned Integer Elements  (32-Bit)
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vsubfp vsubfp
Vector Subtract Floating Point (0x1000 004A)

vsubfp vD,vA,vB Form: VX

do i=0 to 127 by 32
(vD)i:i+31 ← RndToNearFP32((vA)i:i+31 -fp (vB)i:i+31)

end

Each single-precision floating-point word element in register vB is subtracted from the corresponding single-
precision floating-point word element in register vA. The result is rounded to the nearest single-precision 
floating-point number and placed into the corresponding word element of register vD.

If VSCR[NJ] =‘1’, every denormalized operand element is truncated to a ‘0’ of the same sign before the oper-
ation is carried out, and each denormalized result element truncates to a ‘0’ of the same sign.

Other registers altered:

• None

Figure 6-127 shows the usage of the vsubfp instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 74

0 5 6 10 11 15 16 20 21 31

Figure 6-127. vsubfp—Subtract Four Floating Point Elements  (32-Bit)
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vsubsbs vsubsbs
Vector Subtract Signed Byte Saturate (0x1000 0700)

vsubsbs vD,vA,vB Form: VX 

do i=0 to 127 by 8
aop0:8 ← SignExtend((vA)i:i+7,9)
bop0:8 ← SignExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int ¬bop0:8 +int 1
(vD)i:i+7 ← SItoSIsat(temp0:8,8)

end

Each element is a byte. Each signed-integer element in register vB is subtracted from the corresponding 
signed-integer element in register vA. If the intermediate result is greater than (27-1) it saturates to (27-1) and 
if the intermediate result is less than (-27), it saturates to (-27). If saturation occurs, the SAT bit is set. The 
signed-integer result is placed into the corresponding element of register vD.

Other registers altered:

• SAT

Figure 6-128 shows the usage of the vsubsbs instruction. Each of the sixteen elements in the registers vA, 
vB, and vD is 8 bits in length.

04 vD vA vB 1792

0 5 6 10 11 15 16 20 21 31

Figure 6-128. vsubsbs—Subtract Sixteen Signed Integer Elements  (8-Bit)

- ---------------
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vsubshs vsubshs
Vector Subtract Signed Halfword Saturate (0x1000 0740)

vsubshs vD,vA,vB Form: VX 

do i=0 to 127 by 16
aop0:16 ← SignExtend((vA)i:i+15,17)
bop0:16 ← SignExtend((vB)i:i+15,17)
temp0:16 ← aop0:16 +int ¬bop0:16 +int 1
(vD)i:i+15 ← SItoSIsat(temp0:16,16)

end

Each element is a halfword. Each signed-integer element in register vB is subtracted from the corresponding 
signed-integer element in register vA. If the intermediate result is greater than (215-1) it saturates to (215-1) 
and if the intermediate result is less than (-215) it saturates to (-215). If saturation occurs, the SAT bit is set. 
The signed-integer result is placed into the corresponding element of register vD.

Other registers altered:

• SAT

Figure 6-129 shows the usage of the vsubshs instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 1856

0 5 6 10 11 15 16 20 21 31

Figure 6-129. vsubshs—Subtract Eight Signed Integer Elements  (16-Bit)
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vsubsws vsubsws
Vector Subtract Signed Word Saturate (0x1000 0780)

vsubsws vD,vA,vB Form: VX 

do i=0 to 127 by 32
aop0:32 ← SignExtend((vA)i:i+31,33)
bop0:32 ← SignExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int ¬bop0:32 +int 1
(vD)i:i+31 ← SItoSIsat(temp0:32,32)

end

Each element is a word. Each signed-integer element in register vB is subtracted from the corresponding 
signed-integer element in register vA. If the intermediate result is greater than (231-1) it saturates to (231-1) 
and if the intermediate result is less than (-231) it saturates to (-231). If saturation occurs, the SAT bit is set. 
The signed-integer result is placed into the corresponding element of register vD.

Other registers altered:

• SAT

Figure 6-130 shows the usage of the vsubsws instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 1920

0 5 6 10 11 15 16 20 21 31

Figure 6-130. vsubsws—Subtract Four Signed Integer Elements  (32-Bit)

----
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vsububm vsububm
Vector Subtract Unsigned Byte Modulo (0x1000 0400)

vsububm vD,vA,vB Form: VX 

do i=0 to 127 by 8
(vD)i:i+7← (vA)i:i+7 +int ¬(vB)i:i+7 +int 1

end

Each element of vsububm is a byte. Each integer element in register vB is subtracted from the corre-
sponding integer element in register vA. The integer result is placed into the corresponding element of 
register vD.

Other registers altered:

• None

Note the vsububm instruction can be used for unsigned or signed integers.

Figure 6-131 shows the usage of the vsububm instruction. Each of the sixteen elements in the registers vA, 
vB, and vD is 8 bits in length.

04 vD vA vB 1024

0 5 6 10 11 15 16 20 21 31

Figure 6-131. vsububm—Subtract Sixteen Integer Elements  (8-Bit)
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vsububs vsububs
Vector Subtract Unsigned Byte Saturate (0x1000 0600)

vsububs vD,vA,vB Form: VX 

do i=0 to 127 by 8
aop0:8 ← ZeroExtend((vA)i:i+7,9)
bop0:8 ← ZeroExtend((vB)i:i+7,9)
temp0:8 ← aop0:8 +int ¬bop0:8 +int 1
(vD)i:i+7 ← SItoUIsat(temp0:8,8)

end

Each element is a byte. Each unsigned-integer element in register vB is subtracted from the corresponding 
unsigned-integer element in register vA. If the intermediate result is less than ‘0’ it saturates to ‘0’. If satura-
tion occurs, the SAT bit is set. The unsigned-integer result is placed into the corresponding element of 
register vD.

Other registers altered:

• SAT

Figure 6-132 shows the usage of the vsububs instruction. Each of the sixteen elements in the registers vA, 
vB, and vD is 8 bits in length.

04 vD vA vB 1536

0 5 6 10 11 15 16 20 21 31

Figure 6-132. vsububs—Subtract Sixteen Unsigned Integer Elements  (8-Bit)

- ---------------
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vsubuhm vsubuhm
Vector Subtract Signed Halfword Modulo (0x1000 0440)

vsubuhm vD,vA,vB Form: VX

do i=0 to 127 by 16
(vD)i:i+15← (vA)i:i+15 +int ¬(vB)i:i+15 +int 1

end

Each element is a halfword. Each integer element in register vB is subtracted from the corresponding integer 
element in register vA. The integer result is placed into the corresponding element of register vD.

Other registers altered:

• None

Notes:  vsubuhm instruction can be used for unsigned or signed integers.

Figure 6-133 shows the usage of the vsubuhm instruction. Each of the eight elements in the registers vA, 
vB, and vD is 16 bits in length.

04 vD vA vB 1088

0 5 6 10 11 15 16 20 21 31

Figure 6-133. vsubuhm—Subtract Eight Integer Elements  (16-Bit)

--------
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vsubuhs vsubuhs
Vector Subtract Signed Halfword Saturate (0x1000 0640)

vsubuhs vD,vA,vB Form: VX 

do i=0 to 127 by 16
aop0:16 ← ZeroExtend((vA)i:i+15,17)
bop0:16 ← ZeroExtend((vB)i:i+n:1,17)
temp0:16 ← aop0:n +int ¬bop0:16 +int 1
(vD)i:i+15 ← SItoUIsat(temp0:16,16)

end

Each element is a halfword. Each unsigned-integer element in register vB is subtracted from the corre-
sponding unsigned-integer element in register vA. If the intermediate result is less than ‘0’ it saturates to ‘0’. If 
saturation occurs, the SAT bit is set. The unsigned-integer result is placed into the corresponding element of 
register vD.

Other registers altered:

• SAT

Figure 6-134 shows the usage of the vsubuhs instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD vA vB 1600

0 5 6 10 11 15 16 20 21 31

Figure 6-134. vsubuhs—Subtract Eight Signed Integer Elements  (16-Bit)

--------
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vsubuwm vsubuwm
Vector Subtract Unsigned Word Modulo (0x1000 0480)

vsubuwm vD,vA,vB Form: VX 

do i=0 to 127 by 32
(vD)i:i+31← (vA)i:i+31 +int ¬(vB)i:i+31 +int 1

end

Each element of vsubuwm is a word. Each integer element in register vB is subtracted from the corre-
sponding integer element in register vA. The integer result is placed into the corresponding element of 
register vD.

Other registers altered:

• None

Note:  The vsubuwm instruction can be used for unsigned or signed integers.

Figure 6-135 shows the usage of the vsubuwm instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 1152

0 5 6 10 11 15 16 20 21 31

Figure 6-135. vsubuwm—Subtract Four Integer Elements  (32-Bit)

----
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vsubuws vsubuws
Vector Subtract Unsigned Word Saturate (0x1000 0680)

vsubuws vD,vA,vB Form: VX 

do i=0 to 127 by 32
aop0:32 ← ZeroExtend((vA)i:i+31,33)
bop0:32 ← ZeroExtend((vB)i:i+31,33)
temp0:32 ← aop0:32 +int ¬bop0:32 +int 1
(vD)i:i+31 ← SItoUIsat(temp0:32,32)

end

Each element is a word. Each unsigned-integer element in register vB is subtracted from the corresponding 
unsigned-integer element in register vA. If the intermediate result is less than ‘0’ it saturates to ‘0’. If satura-
tion occurs, the SAT bit is set. The unsigned-integer result is placed into the corresponding element of 
register vD.

Other registers altered:

• SAT

Figure 6-135 shows the usage of the vsubuws instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 1664

0 5 6 10 11 15 16 20 21 31

Figure 6-136. vsubuws—Subtract Four Signed Integer Elements  (32-Bit)

----
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vsumsws vsumsws
Vector Sum Across Signed Word Saturate (0x1000 0788)

vsumsws vD,vA,vB Form: VX 

temp0:34 ← SignExtend((vB)96:127,35)
do i=0 to 127 by 32
temp0:34 ← temp0:34 +int SignExtend((vA)i:i+31,35)

(vD) ← 960 || SItoSIsat(temp0:34,32)

end

The signed-integer sum of the four signed-integer word elements in register vA is added to the signed-integer 
word element in bits of vB[96-127]. If the intermediate result is greater than (231-1) it saturates to (231-1) and 
if it is less than (-231) it saturates to (-231). If saturation occurs, the SAT bit is set. The signed-integer result is 
placed into bits vD[96–127]. Bits vD[0–95] are cleared.

Other registers altered:

• SAT

Figure 6-137 shows the usage of the vsumsws instruction. Each of the four elements in the registers vA, vB, 
and vD is 32 bits in length.

04 vD vA vB 1928

0 5 6 10 11 15 16 20 21 31

Figure 6-137. vsumsws—Sum Four Signed Integer Elements  (32-Bit)
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vsum2sws vsum2sws
Vector Sum Across Partial (1/2) Signed Word Saturate (0x1000 0688)

vsum2sws vD,vA,vB Form: VX 

do i=0 to 127 by 64
temp0:33 ← SignExtend((vB)i+32:i+63,34)
do j=0 to 63 by 32

temp0:33 ← temp0:33 +int SignExtend((vA)i+j:i+j+31,34)

end

(vD)i:i+63 ← 320 || SItoSIsat(temp0:33,32)

end

The signed-integer sum of the first two signed-integer word elements in register vA is added to the signed-
integer word element in vB[32–63]. If the intermediate result is greater than (231-1) it saturates to (231-1) and 
if the intermediate result is less than (-231) it saturates to (-231). If saturation occurs, the SAT bit is set. The 
signed-integer result is placed into vD[32–63]. 

The signed-integer sum of the last two signed-integer word elements in register vA is added to the signed-
integer word element in vB[96-127]. If the intermediate result is greater than (231-1) it saturates to (231-1) and 
if it is less than (-231) it saturates to (-231). If saturation occurs, the SAT bit is set. The signed-integer result is 
placed into vD[96–127]. The bits vD[0–31,64–95] are cleared to ‘0’.

Other registers altered:

• SAT

Figure 6-138 shows the usage of the vsum2sws instruction. Each of the four elements in the registers vA, 
vB, and vD is 32 bits in length.

04 vD vA vB 1672

0 5 6 10 11 15 16 20 21 31

Figure 6-138. vsum2sws—Two Sums in the Four Signed Integer Elements  (32-Bit)

+

vA

vB

vD0  0  0  0  0  0  0  00  0  0  0  0  0  0  0

+
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vsum4sbs vsum4sbs
Vector Sum Across Partial (1/4) Signed Byte Saturate (0x1000 0708)

vsum4sbs vD,vA,vB Form: VX 

do i=0 to 127 by 32
temp0:32 ← SignExtend((vB)i:i+31,33)
 do j=0 to 31 by 8

temp0:32 ← temp0:32 +int SignExtend((vA)i+j:i+j+7,33)

end
(vD)i:i+31 ← SItoSIsat(temp0:32,32)

end

For each word element in register vB, the following operations are performed in the order shown:

• The signed-integer sum of the four signed-integer byte elements contained in the corresponding word 
element of register vA is added to the signed-integer word element in register vB.

• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than (-231) it saturates 
to (-231). If saturation occurs, the SAT bit is set.

• The signed-integer result is placed into the corresponding word element of register vD.

Other registers altered:

• SAT

Figure 6-139 shows the usage of the vsum4sbs instruction. Each of the sixteen elements in the register vA, 
is 8 bits in length. Each of the four elements in the registers vB and vD is 32 bits in length.

04 vD vA vB 1800

0 5 6 10 11 15 16 20 21 31

Figure 6-139. vsum4sbs—Four Sums in the Integer Elements  (32-Bit)

vA

vB

vD

++++
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vsum4shs vsum4shs
Vector Sum Across Partial (1/4) Signed Halfword Saturate (0x1000 0648)

vsum4shs vD,vA,vB Form: VX 

do i=0 to 127 by 32
temp0:32 ← SignExtend((vB)i:i+31,33)
do j=0 to 31 by 16

temp0:32 ← temp0:32 +int SignExtend((vA)i+j:i+j+15,33)

end
(vD)i:i+31 ← SItoSIsat(temp0:32,32)

end

For each word element in register vB, the following operations are performed in the order shown:

• The signed-integer sum of the two signed-integer halfword elements contained in the corresponding word 
element of register vA is added to the signed-integer word element in vB.

• If the intermediate result is greater than (231-1) it saturates to (231-1) and if it is less than -231 it saturates 
to -231. If saturation occurs, the SAT bit is set.

• The signed-integer result is placed into the corresponding word element of register vD.

Other registers altered:

• SAT

Figure 6-140 shows the usage of the vsum4shs instruction. Each of the eight elements in the register vA is 
16 bits in length. Each of the four elements in the registers vB and vD is 32 bits in length.

04 vD vA vB 1608

0 5 6 10 11 15 16 20 21 31

Figure 6-140. vsum4shs—Four Sums in the Integer Elements  (32-Bit)

vA

vB

vD

++++
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vsum4ubs vsum4ubs
Vector Sum Across Partial (1/4) Unsigned Byte Saturate (0x1000 0608)

vsum4ubs vD,vA,vB Form: VX

do i=0 to 127 by 32
temp0:32 ← ZeroExtend((vB)i:i+31,33)
do j=0 to 31 by 8

temp0:32 ← temp0:32 +int ZeroExtend((vA)i+j:i+j+7,33)

end
(vD)i:i+31 ← UItoUIsat(temp0:32,32)

end

For each word element in vB, the following operations are performed in the order shown:

• The unsigned-integer sum of the four unsigned-integer byte elements contained in the corresponding 
word element of register vA is added to the unsigned-integer word element in register vB.

• If the intermediate result is greater than (232-1) it saturates to (232-1). If saturation occurs, the SAT bit is 
set.

• The unsigned-integer result is placed into the corresponding word element of vD.

Other registers altered:

• SAT

Figure 6-141 shows the usage of the vsum4ubs instruction. Each of the four elements in the register vA is 
8 bits in length. Each of the four elements in the registers vB and vD is 32 bits in length.

04 vD vA vB 1544

0 5 6 10 11 15 16 20 21 31

Figure 6-141. vsum4ubs—Four Sums in the Integer Elements  (32-Bit)

vA

vB

vD

++++
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vupkhpx vupkhpx
Vector Unpack High Pixel16 (0x1000 034E)

vupkhpx vD,vB Form: VX 

do i=0 to 63 by 16
(vD)i*2:(i*2)+7 ← SignExtend((vB)i,8)
(vD)(i*2)+8:(i*2)+15 ← ZeroExtend((vB)i+1:i+5,8)
(vD)(i*2)+16:(i*2)+23 ← ZeroExtend((vB)i+6:i+10,8)
(vD)(i*2)+24:(i*2)+31 ← ZeroExtend((vB)i+11:i+15,8)

end

Each halfword element in the high-order half of register vB is unpacked to produce a 32-bit value as 
described below and placed, in the same order, into the four words of register vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the following operations:

• sign-extend bit [0] of the halfword to 8 bits

• zero-extend bits [1–5] of the halfword to 8 bits

• zero-extend bits [6–10] of the halfword to 8 bits

• zero-extend bits [11–15] of the halfword to 8 bits

Other registers altered:

• None

The source and target elements can be considered to be 16-bit and 32-bit “pixels” respectively, having the 
formats described in the programming note for the Vector Pack Pixel instruction.

Figure 6-142 shows the usage of the vupkhpx instruction. Each of the eight elements in the register vB is 16 
bits in length. Each of the four elements in the register vD is 32 bits in length.

04 vD 0 0 0 0 0 vB 846

0 5 6 10 11 15 16 20 21 31

Figure 6-142. vupkhpx—Unpack High-Order Elements (16 bit) to Elements (32-Bit) 

vB

vD000 000 000 000
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vupkhsb vupkhsb
Vector Unpack High Signed Byte (0x1000 020E)

vupkhsb vD,vB Form: VX 

do i=0 to 63 by 8
(vD)i*2:(i*2)+15 ← SignExtend((vB)i:i+7,16)

end

Each signed integer byte element in the high-order half of register vB is sign-extended to produce a 16-bit 
signed integer and placed, in the same order, into the eight halfwords of register vD.

Other registers altered:

• None

Figure 6-143 shows the usage of the vupkhsb instruction. Each of the sixteen elements in the register vB is 
8 bits in length. Each of the eight elements in the register vD is 16 bits in length.

04 vD 0 0 0 0 0 vB 526

0 5 6 10 11 15 16 20 21 31

Figure 6-143. vupkhsb—Unpack HIgh-Order Signed Integer Elements (8-Bit) to Signed Integer Elements 
(16-Bit) 

SSSSSSSSSSSSSSSS

vB

vD
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vupkhsh vupkhsh
Vector Unpack High Signed Halfword (0x1000 024E)

vupkhsh vD,vB Form: VX 

do i=0 to 63 by 16
(vD)i*2:(i*2)+31 ← SignExtend((vB)i:i+15,32)

end

Each signed integer halfword element in the high-order half of register vB is sign-extended to produce a 
32-bit signed integer and placed, in the same order, into the four words of register vD.

Other registers altered:

• None

Figure 6-144 shows the usage of the vupkhsh instruction. Each of the eight elements in the registers vB and 
vD is 16 bits in length. 

04 vD 0 0 0 0 0 vB 590

0 5 6 10 11 15 16 20 21 31

Figure 6-144. vupkhsh—Unpack Signed Integer Elements (16-Bit) to Signed Integer Elements (32-Bit) 

vB

vDSSSSSSSSSSSSSSSS
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vupklpx vupklpx
Vector Unpack Low Pixel16 (0x1000 03CE)

vupklpx vD,vB Form: VX 

do i=0 to 63 by 16
(vD)i*2:(i*2)+7 ← SignExtend((vB)i+64,8)
(vD)(i*2)+8:(i*2)+15 ← ZeroExtend((vB)i+65:i+69,8)
(vD)(i*2)+16:(i*2)+23← ZeroExtend((vB)i+70:i+74,8)
(vD)(i*2)+24:(i*2)+31← ZeroExtend((vB)i+75:i+79,8)

end

Each halfword element in the low-order half of register vB is unpacked to produce a 32-bit value as described 
below and placed, in the same order, into the four words of register vD.

A halfword is unpacked to 32 bits by concatenating, in order, the results of the following operations:

• sign-extend bit [0] of the halfword to 8 bits

• zero-extend bits [1–5] of the halfword to 8 bits

• zero-extend bits [6–10] of the halfword to 8 bits

• zero-extend bits [11–15] of the halfword to 8 bits

Other registers altered:

• None

Programming note: Notice that the unpacking done by the Vector Unpack Pixel instructions does not 
reverse the packing done by the Vector Pack Pixel instruction. Specifically, if a 16-bit pixel is unpacked to a 
32-bit pixel which is then packed to a 16-bit pixel, the resulting 16-bit pixel will not, in general, be equal to the 
original 16-bit pixel (because, for each channel except the first, Vector Unpack Pixel inserts high-order bits 
while Vector Pack Pixel discards low-order bits).

Figure 6-142 shows the usage of the vupklpx instruction. Each of the eight elements in register vB is 16 bits 
in length. Each of the four elements in the register vD is 32 bits in length. 

04 vD 0 0 0 0 0 vB 974

0 5 6 10 11 15 16 20 21 31

Figure 6-145. vupklpx—Unpack Low-Order Elements (16-Bit) to Elements (32-Bit) 

vB

vD000000000 000000
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vupklsb vupklsb
Vector Unpack Low Signed Byte (0x1000 028E)

vupklsb vD,vB Form: VX 

do i=0 to 63 by 8
(vD)i*2:(i*2)+15 ← SignExtend((vB)i+64:i+71,16)

end

Each signed integer byte element in the low-order half of register vB is sign-extended to produce a 16-bit 
signed integer and placed, in the same order, into the eight halfwords of register vD.

Other registers altered:

• None

Figure 6-146 shows the usage of the vaddubs instruction. Each of the sixteen elements in the registers vB 
and vD is 8 bits in length.

04 vD 0 0 0 0 0 vB 654

0 5 6 10 11 15 16 20 21 31

Figure 6-146. vupklsb—Unpack Low-Order Elements (8-Bit) to Elements (16-Bit) 

vB

vDSSSSSSSSSSSSSSSS
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vupklsh vupklsh
Vector Unpack Low Signed Halfword (0x1000 02CE)

vupklsh vD,vB Form: VX 

do i=0 to 63 by 16
(vD)i*2:(i*2)+31 ← SignExtend((vB)i+64:i+79,32)

end

Each signed integer halfword element in the low-order half of register vB is sign-extended to produce a 32-bit 
signed integer and placed, in the same order, into the four words of register vD.

Other registers altered:

• None

Figure 6-147 shows the usage of the vupklpx instruction. Each of the eight elements in the registers vA, vB, 
and vD is 16 bits in length.

04 vD 0 0 0 0 0 vB 718

0 5 6 10 11 15 16 20 21 31

Figure 6-147. vupklsh—Unpack Low-Order Signed Integer Elements (16-Bit) to Signed Integer Elements 
(32-Bit) 

vB

vDSSSSSSSSSSSSSSSS
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vxor vxor
Vector Logical XOR (0x1000 04C4)

vxor vD,vA,vB Form: VX 

(vD) ← (vA) ⊕ (vB)

The contents of register vA are XORed with the contents of register vB and the result is placed into register 
vD.

Other registers altered:

• None

Figure 6-148 shows the usage of the vxor instruction.

04 vD vA vB 1220

0 5 6 10 11 15 16 20 21 31

Figure 6-148. vxor—Bitwise XOR (128-Bit) 

⊕

vA

vB

vD
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Appendix A. Vector Processing Instruction Set Listings

This appendix lists the instruction set for the vector/SIMD multimedia extension technology. Instructions are 
sorted by mnemonic, opcode, and form. Also included in this appendix is a quick reference table that contains 
general information, such as the architecture level, privilege level, and form, and indicates if the instruction is 
64-bit, or optional, or both.

Note:  Split fields, which represent the concatenation of sequences from left to right, are shown in lowercase. 

A.1 Instructions Sorted by Mnemonic

Table A-1 lists the instructions implemented in the vector architecture in alphabetical order by mnemonic. 

. 

Table A-1. Complete Instruction List Sorted by Mnemonic  (Page 1 of 5)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dss1 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dssall1 31 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 822 0

dst1 31 T 0 0 STRM rA rB 342 0

dstst1 31 T 0 0 STRM rA rB 374 0

dststt1 31 1 0 0 tag rA rB 11 22 0

dstt1 31 1 0 0 tag rA rB 0 0

lvebx 31 vD rA rB 7 0

lvehx 31 vD rA rB 39 0

lvewx 31 vD rA rB 71 0

lvlx 31 vD rA rB 519 0

lvlxl 31 vD rA rB 775 0

lvrx 31 vD rA rB 551 0

lvrxl 31 vD rA rB 807 0

lvsl 31 vD rA rB 6 0

lvsr 31 vD rA rB 38 0

lvx 31 vD rA rB 103 0

lvxl 31 vD rA rB 359 0

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540

mtvscr 04 /// 0 0 0 0 0 vB 1604

stvebx 31 vS rA rB 135 0

stvehx 31 vS rA rB 167 0

stvewx 31 vS rA rB 199 0

stvlx 31 vS rA rB 647 0

stvlxl 31 vS rA rB 903 0

stvrx 31 vS rA rB 679 0

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 

Reserved bits

Key:



Programming Environments Manual
 
Vector/SIMD Multimedia Extension Technology   

Instructions Sorted by Mnemonic

Page 292 of 329
Version 2.07c

October 26, 2006

stvrxl 31 vS rA rB 935 0

stvx 31 vS rA rB 231 0

stvxl 31 vS rA rB 487 0

vaddcuw 04 vD vA vB 384 0

vaddfp 04 vD vA vB 10 0

vaddsbs 04 vD vA vB 768 0

vaddshs 04 vD vA vB 832 0

vaddsws 04 vD vA vB 896 0

vaddubm 04 vD vA vB 0 0

vaddubs 04 vD vA vB 512 0

vadduhm 04 vD vA vB 64 0

vadduhs 04 vD vA vB 576 0

vadduwm 04 vD vA vB 128 0

vadduws 04 vD vA vB 640 0

vand 04 vD vA vB 1028 0

vandc 04 vD vA vB 1092 0

vavgsb 04 vD vA vB 1282 0

vavgsh 04 vD vA vB 1346 0

vavgsw 04 vD vA vB 1410 0

vavgub 04 vD vA vB 1026 0

vavguh 04 vD vA vB 1090 0

vavguw 04 vD vA vB 1154 0

vcfsx 04 vD UIMM vB 842

vcfux 04 vD UIMM vB 778

vcmpbfpx 04 vD vA vB Rc 966

vcmpeqfx 04 vD vA vB Rc 198

vcmpequbx 04 vD vA vB Rc 6

vcmpequhx 04 vD vA vB Rc 70

vcmpequwx 04 vD vA vB Rc 134

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtfpx 04 vD vA vB Rc 710

vcmpgtsbx 04 vD vA vB Rc 774

vcmpgtshx 04 vD vA vB Rc 838

vcmpgtswx 04 vD vA vB Rc 902

vcmpgtubx 04 vD vA vB Rc 518

vcmpgtuhx 04 vD vA vB Rc 582

vcmpgtuwx 04 vD vA vB Rc 646

vctsxs 04 vD UIMM vB 970

vctuxs 04 vD UIMM vB 906

vexptefp 04 vD 0 0 0 0 0 vB 394

Table A-1. Complete Instruction List Sorted by Mnemonic  (Page 2 of 5)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vlogefp 04 vD 0 0 0 0 0 vB 458

vmaddfp 04 vD vA vB vC 46

vmaxfp 04 vD vA vB 1034

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vminfp 04 vD vA vB 1098

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578

vminuw 04 vD vA vB 642

vmladduhm 04 vD vA vB vC 34

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vmsummbm 04 vD vA vB vC 37

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vmsumubm 04 vD vA vB vC 36

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmulesb 04 vD vA vB 776

vmulesh 04 vD vA vB 840

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vnmsubfp 04 vD vA vB vC 47

Table A-1. Complete Instruction List Sorted by Mnemonic  (Page 3 of 5)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vnor 04 vD vA vB 1284

vor 04 vD vA vB 1156

vperm 04 vD vA vB vC 43

vpkpx 04 vD vA vB 782

vpkshss 04 vD vA vB 398

vpkshus 04 vD vA vB 270

vpkswss 04 vD vA vB 462

vpkuhum 04 vD vA vB 14

vpkuhus 04 vD vA vB 142

vpkuwum 04 vD vA vB 78

vpkuwus 04 vD vA vB 206

vrefp 04 vD 0 0 0 0 0 vB 266

vrfim 04 vD 0 0 0 0 0 vB 714

vrfin 04 vD 0 0 0 0 0 vB 522

vrfip 04 vD 0 0 0 0 0 vB 650

vrfiz 04 vD 0 0 0 0 0 vB 586

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vrsqrtefp 04 vD 0 0 0 0 0 vB 330

vsel 04 vD vA vB vC 42

vsl 04 vD vA vB 452

vslb 04 vD vA vB 260

vsldoi 04 vD vA vB 0 SH 44

vslh 04 vD vA vB 324

vslo 04 vD vA vB 1036

vslw 04 vD vA vB 388

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltisb 04 vD SIMM vB 780

vspltish 04 vD SIMM 0 0 0 0 0 844

vspltisw 04 vD SIMM 0 0 0 0 0 908

vspltw 04 vD UIMM vB 652

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsro 04 vD vA vB 1100

Table A-1. Complete Instruction List Sorted by Mnemonic  (Page 4 of 5)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vsrw 04 vD vA vB 644

vsubcuw 04 vD vA vB 1408

vsubfp 04 vD vA vB 74

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vsububm 04 vD vA vB 1024

vsububs 04 vD vA vB 1536

vsubuhm 04 vD vA vB 1088

vsubuhs 04 vD vA vB 1600

vsubuwm 04 vD vA vB 1152

vsubuws 04 vD vA vB 1664

vsumsws 04 vD vA vB 1928

vsum2sws 04 vD vA vB 1672

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum4ubs 04 vD vA vB 1544

vupkhpx 04 vD 0 0 0 0 0 vB 846

vupkhsb 04 vD 0 0 0 0 0 vB 526

vupkhsh 04 vD 0 0 0 0 0 vB 590

vupklpx 04 vD 0 0 0 0 0 vB 974

vupklsb 04 vD 0 0 0 0 0 vB 654

vupklsh 04 vD 0 0 0 0 0 vB 718

vxor 04 vD vA vB 1220

Table A-1. Complete Instruction List Sorted by Mnemonic  (Page 5 of 5)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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A.2 Instructions Sorted by Opcode

Figure A-2 lists the vector instructions grouped by opcode. 

Table A-2. Instructions Sorted by Opcode  (Page 1 of 6)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 000100 vD vA vB vC 10 0000

vmhraddshs 000100 vD vA vB vC 10 0001

vmladduhm 000100 vD vA vB vC 10 0010

vmsumubm 000100 vD vA vB vC 10 0100

vmsummbm 000100 vD vA vB vC 10 0101

vmsumuhm 000100 vD vA vB vC 10 0110

vmsumuhs 000100 vD vA vB vC 10 0111

vmsumshm 000100 vD vA vB vC 10 1000

vmsumshs 000100 vD vA vB vC 10 1001

vsel 000100 vD vA vB vC 10 1010

vperm 000100 vD vA vB vC 10 1011

vsldoi 000100 vD vA vB 0 SH 10 1100

vmaddfp 000100 vD vA vB 000 0010 1110

vnmsubfp 000100 vD vA vB vC 10 1111

vaddubm 000100 vD vA vB 000 0000 0000

vadduhm 000100 vD vA vB 000 0100 0000

vadduwm 000100 vD vA vB 000 1000 0000

vaddcuw 000100 vD vA vB 001 1000 0000

vaddubs 000100 vD vA vB 010 0000 0000

vadduhs 000100 vD vA vB 010 0100 0000

vadduws 000100 vD vA vB 010 1000 0000

vaddsbs 000100 vD vA vB 011 0000 0000

vaddshs 000100 vD vA vB 011 0100 0000

vaddsws 000100 vD vA vB 011 1000 0000

vsububm 000100 vD vA vB 100 0000 0000

vsubuhm 000100 vD vA vB 100 0100 0000

vsubuwm 000100 vD vA vB 100 1000 0000

vsubcuw 000100 vD vA vB 101 1000 0000

vsububs 000100 vD vA vB 110 0000 0000

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 

Reserved bits

Key:
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vsubuhs 000100 vD vA vB 110 0100 0000

vsubuws 000100 vD vA vB 110 1000 0000

vsubsbs 000100 vD vA vB 111 0000 0000

vsubshs 000100 vD vA vB 111 0100 0000

vsubsws 000100 vD vA vB 111 1000 0000

vmaxub 000100 vD vA vB 000 0000 0010

vmaxuh 000100 vD vA vB 000 0100 0010

vmaxuw 000100 vD vA vB 000 1000 0010

vmaxsb 000100 vD vA vB 001 0000 0010

vmaxsh 000100 vD vA vB 001 0100 0010

vmaxsw 000100 vD vA vB 001 1000 0010

vminub 000100 vD vA vB 010 0000 0010

vminuh 000100 vD vA vB 010 0100 0010

vminuw 000100 vD vA vB 010 1000 0010

vminsb 000100 vD vA vB 011 0000 0010

vminsh 000100 vD vA vB 011 0100 0010

vminsw 000100 vD vA vB 011 1000 0010

vavgub 000100 vD vA vB 100 0000 0010

vavguh 000100 vD vA vB 100 0100 0010

vavguw 000100 vD vA vB 100 1000 0010

vavgsb 000100 vD vA vB 101 0000 0010

vavgsh 000100 vD vA vB 101 0100 0010

vavgsw 000100 vD vA vB 101 1000 0010

vrlb 000100 vD vA vB 000 0000 0100

vrlh 000100 vD vA vB 000 0100 0100

vrlw 000100 vD vA vB 000 1000 0100

vslb 000100 vD vA vB 001 0000 0100

vslh 000100 vD vA vB 001 0100 0100

vslw 000100 vD vA vB 001 1000 0100

vsl 000100 vD vA vB 001 1100 0100

vsrb 000100 vD vA vB 010 0000 0100

vsrh 000100 vD vA vB 010 0100 0100

vsrw 000100 vD vA vB 010 1000 0100

vsr 000100 vD vA vB 010 1100 0100

vsrab 000100 vD vA vB 011 0000 0100

Table A-2. Instructions Sorted by Opcode  (Page 2 of 6)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vsrah 000100 vD vA vB 011 0100 0100

vsraw 000100 vD vA vB 011 1000 0100

vand 000100 vD vA vB 100 0000 0100

vandc 000100 vD vA vB 100 0100 0100

vor 000100 vD vA vB 100 1000 0100

vxor 000100 vD vA vB 100 1100 0100

vnor 000100 vD vA vB 101 0000 0100

mfvscr 000100 vD 0 0 0 0 0 0 0 0 0 0 110 0000 0100

mtvscr 000100 0 0 0 0 0 0 0 0 0 0 vB 110 0100 0100

vcmpequbx 000100 vD vA vB Rc 00 0000 0110

vcmpequhx 000100 vD vA vB Rc 00 0100 0110

vcmpequwx 000100 vD vA vB Rc 00 1000 0110

vcmpeqfpx 000100 vD vA vB Rc 00 1100 0110

vcmpgefpx 000100 vD vA vB Rc 01 1100 0110

vcmpgtubx 000100 vD vA vB Rc 10 0000 0110

vcmpgtuhx 000100 vD vA vB Rc 10 0100 0110

vcmpgtuwx 000100 vD vA vB Rc 10 1000 0110

vcmpgtfpx 000100 vD vA vB Rc 10 1100 0110

vcmpgtsbx 000100 vD vA vB Rc 11 0000 0110

vcmpgtshx 000100 vD vA vB Rc 11 0100 0110

vcmpgtswx 000100 vD vA vB Rc 11 1000 0110

vcmpbfpx 000100 vD vA vB Rc 11 1100 0110

vmuloub 000100 vD vA vB 000 0000 1000

vmulouh 000100 vD vA vB 000 0100 1000

vmulosb 000100 vD vA vB 001 0000 1000

vmulosh 000100 vD vA vB 001 0100 1000

vmuleub 000100 vD vA vB 010 0000 1000

vmuleuh 000100 vD vA vB 010 0100 1000

vmulesb 000100 vD vA vB 011 0000 1000

vmulesh 000100 vD vA vB 011 0100 1000

vsum4ubs 000100 vD vA vB 110 0000 1000

vsum4sbs 000100 vD vA vB 111 0000 1000

vsum4shs 000100 vD vA vB 110 0100 1000

vsum2sws 000100 vD vA vB 110 1000 1000

vsumsws 000100 vD vA vB 111 1000 1000

Table A-2. Instructions Sorted by Opcode  (Page 3 of 6)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vaddfp 000100 vD vA vB 000 0000 1010

vsubfp 000100 vD vA vB 000 0100 1010

vrefp 000100 vD 0 0 0 0 0 vB 001 0000 1010

vrsqrtefp 000100 vD 0 0 0 0 0 vB 001 0100 1010

vexptefp 000100 vD 0 0 0 0 0 vB 001 1000 1010

vlogefp 000100 vD 0 0 0 0 0 vB 001 1100 1010

vrfin 000100 vD 0 0 0 0 0 vB 010 0000 1010

vrfiz 000100 vD 0 0 0 0 0 vB 010 0100 1010

vrfip 000100 vD 0 0 0 0 0 vB 010 1000 1010

vrfim 000100 vD 0 0 0 0 0 vB 010 1100 1010

vcfux 000100 vD UIMM vB 011 0000 1010

vcfsx 000100 vD UIMM vB 011 0100 1010

vctuxs 000100 vD UIMM vB 011 1000 1010

vctsxs 000100 vD UIMM vB 011 1100 1010

vmaxfp 000100 vD vA vB 100 0000 1010

vminfp 000100 vD vA vB 100 0100 1010

vmrghb 000100 vD vA vB 000 0000 1100

vmrghh 000100 vD vA vB 000 0100 1100

vmrghw 000100 vD vA vB 000 1000 1100

vmrglb 000100 vD vA vB 001 0000 1100

vmrglh 000100 vD vA vB 001 0100 1100

vmrglw 000100 vD vA vB 001 1000 1100

vspltb 000100 vD UIMM vB 010 0000 1100

vsplth 000100 vD UIMM vB 010 0100 1100

vspltw 000100 vD UIMM vB 010 1000 1100

vspltisb 000100 vD SIMM 0 0 0 0 0 011 0000 1100

vspltish 000100 vD SIMM 0 0 0 0 0 011 0100 1100

vspltisw 000100 vD SIMM 0 0 0 0 0 011 1000 1100

vslo 000100 vD vA vB 100 0000 1100

vsro 000100 vD vA vB 100 0100 1100

vpkuhum 000100 vD vA vB 000 0000 1110

vpkuwum 000100 vD vA vB 000 0100 1110

vpkuhus 000100 vD vA vB 000 1000 1110

vpkuwus 000100 vD vA vB 000 1100 1110

vpkshus 000100 vD vA vB 001 0000 1110

Table A-2. Instructions Sorted by Opcode  (Page 4 of 6)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vpkswus 000100 vD vA vB 001 0100 1110

vpkshss 000100 vD vA vB 001 1000 1110

vpkswss 000100 vD vA vB 001 1100 1110

vupkhsb 000100 vD 0 0 0 0 0 vB 010 0000 1110

vupkhsh 000100 vD 0 0 0 0 0 vB 010 0100 1110

vupklsb 000100 vD 0 0 0 0 0 vB 010 1000 1110

vupklsh 000100 vD 0 0 0 0 0 vB 010 1100 1110

vpkpx 000100 vD vA vB 011 0000 1110

vupkhpx 000100 vD 0 0 0 0 0 vB 011 0100 1110

vupklpx 000100 vD 0 0 0 0 0 vB 011 1100 1110

lvsl 011111 vD rA rB 00 0000 0110 0

lvsr 011111 vD rA rB 00 0010 0110 0

dst1 011111 T 0 0 STRM rA rB 01 0101 0110 0

dstt1 011111 1 0 0 0 tag rA rB 00 0000 0000 0

dstst1 011111 T 0 0 STRM rA rB 01 0111 0110 0

dststt1 011111 1 0 0 0 tag rA rB 1011 1 0110 0

dss1 011111 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 11 0011 0110 0

dssall1 011111 A 0 0 STRM 0 0 0 0 0 0 0 0 0 0 11 0011 0110 0

lvebx 011111 vD rA rB 00 0000 0111 0

lvehx 011111 vD rA rB 00 0010 0111 0

lvewx 011111 vD rA rB 00 0100 0111 0

lvx 011111 vD rA rB 00 0110 0111 0

lvxl 011111 vD rA rB 01 0110 0111 0

stvebx 011111 vS rA rB 00 1000 0111 0

stvehx 011111 vS rA rB 00 1010 0111 0

stvewx 011111 vS rA rB 00 1100 0111 0

stvx 011111 vS rA rB 00 1110 0111 0

stvxl 011111 vS rA rB 01 1110 0111 0

lvlx 011111 vD rA rB 10 0000 0111 0

lvlxl 011111 vD rA rB 11 0000 0111 0

lvrx 011111 vD rA rB 10 0010 0111 0

lvrxl 011111 vD rA rB 11 0010 0111 0

stvlx 011111 vS rA rB 10 1000 0111 0

Table A-2. Instructions Sorted by Opcode  (Page 5 of 6)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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stvlxl 011111 vS rA rB 11 1000 0111 0

stvrx 011111 vS rA rB 10 1010 0111 0

stvrxl 011111 vS rA rB 11 1010 0111 0

Table A-2. Instructions Sorted by Opcode  (Page 6 of 6)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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A.3 Instructions Sorted by Form

Table A-3 through Table A-6 list the vector instructions grouped by form. 

Table A-3. VA-Form  

OPCD vD vA vB vC XO

OPCD vD vA vB 0 SH XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vmhaddshs 04 vD vA vB vC 32

vmhraddshs 04 vD vA vB vC 33

vmladduhm 04 vD vA vB vC 34

vmsumubm 04 vD vA vB vC 36

vmsummbm 04 vD vA vB vC 37

vmsumuhm 04 vD vA vB vC 38

vmsumuhs 04 vD vA vB vC 39

vmsumshm 04 vD vA vB vC 40

vmsumshs 04 vD vA vB vC 41

vsel 04 vD vA vB vC 42

vperm 04 vD vA vB vC 43

vsldoi 04 vD vA vB 0 SH 44

vmaddfp 04 vD vA vB vC 46

vnmsubfp 04 vD vA vB vC 47

Reserved bits

Key:
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Table A-4. VX-Form  

OPCD vD vA vB XO

OPCD vD 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 vB XO 0

OPCD vD 0 0 0 0 0 vB XO

OPCD vD UIMM vB XO

OPCD vD SIMM 0 0 0 0 0 XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vaddubm 04 vD vA vB 0

vadduhm 04 vD vA vB 64

vadduwm 04 vD vA vB 128

vaddcuw 04 vD vA vB 384

vaddubs 04 vD vA vB 512

vadduhs 04 vD vA vB 576

vadduws 04 vD vA vB 640

vaddsbs 04 vD vA vB 768

vaddshs 04 vD vA vB 832

vaddsws 04 vD vA vB 896

vsububm 04 vD vA vB 1024

vsubuhm 04 vD vA vB 1088

vsubuwm 04 vD vA vB 1152

vsubcuw 04 vD vA vB 1408

vsububs 04 vD vA vB 1536

vsubuhs 04 vD vA vB 1600

vsubuws 04 vD vA vB 1664

vsubsbs 04 vD vA vB 1792

vsubshs 04 vD vA vB 1856

vsubsws 04 vD vA vB 1920

vmaxub 04 vD vA vB 2

vmaxuh 04 vD vA vB 66

vmaxuw 04 vD vA vB 130

vmaxsb 04 vD vA vB 258

vmaxsh 04 vD vA vB 322

vmaxsw 04 vD vA vB 386

vminub 04 vD vA vB 514

vminuh 04 vD vA vB 578
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vminuw 04 vD vA vB 642

vminsb 04 vD vA vB 770

vminsh 04 vD vA vB 834

vminsw 04 vD vA vB 898

vavgub 04 vD vA vB 1026

vavguh 04 vD vA vB 1090

vavguw 04 vD vA vB 1154

vavgsb 04 vD vA vB 1282

vavgsh 04 vD vA vB 1346

vavgsw 04 vD vA vB 1410

vrlb 04 vD vA vB 4

vrlh 04 vD vA vB 68

vrlw 04 vD vA vB 132

vslb 04 vD vA vB 260

vslh 04 vD vA vB 324

vslw 04 vD vA vB 388

vsl 04 vD vA vB 452

vsrb 04 vD vA vB 516

vsrh 04 vD vA vB 580

vsrw 04 vD vA vB 644

vsr 04 vD vA vB 708

vsrab 04 vD vA vB 772

vsrah 04 vD vA vB 836

vsraw 04 vD vA vB 900

vand 04 vD vA vB 1028

vandc 04 vD vA vB 1092

vor 04 vD vA vB 1156

vnor 04 vD vA vB 1284

mfvscr 04 vD 0 0 0 0 0 0 0 0 0 0 1540

mtvscr 04 0 0 0 0 0 0 0 0 0 0 vB 1604

vmuloub 04 vD vA vB 8

vmulouh 04 vD vA vB 72

vmulosb 04 vD vA vB 264

vmulosh 04 vD vA vB 328

vmuleub 04 vD vA vB 520

vmuleuh 04 vD vA vB 584

vmulesb 04 vD vA vB 776

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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vmulesh 04 vD vA vB 840

vsum4ubs 04 vD vA vB 1544

vsum4sbs 04 vD vA vB 1800

vsum4shs 04 vD vA vB 1608

vsum2sws 04 vD vA vB 1672

vsumsws 04 vD vA vB 1928

vaddfp 04 vD vA vB 10

vsubfp 04 vD vA vB 74

vrefp 04 vD 0 0 0 0 0 vB 266

vrsqrtefp 04 vD 0 0 0 0 0 vB 330

vexptefp 04 vD 0 0 0 0 0 vB 394

vlogefp 04 vD 0 0 0 0 0 vB 458

vrfin 04 vD 0 0 0 0 0 vB 522

vrfiz 04 vD 0 0 0 0 0 vB 586

vrfip 04 vD 0 0 0 0 0 vB 650

vrfim 04 vD 0 0 0 0 0 vB 714

vcfux 04 vD UIMM vB 778

vcfsx 04 vD UIMM vB 842

vctuxs 04 vD UIMM vB 906

vctsxs 04 vD UIMM vB 970

vmaxfp 04 vD vA vB 1034

vminfp 04 vD vA vB 1098

vmrghb 04 vD vA vB 12

vmrghh 04 vD vA vB 76

vmrghw 04 vD vA vB 140

vmrglb 04 vD vA vB 268

vmrglh 04 vD vA vB 332

vmrglw 04 vD vA vB 396

vspltb 04 vD UIMM vB 524

vsplth 04 vD UIMM vB 588

vspltw 04 vD UIMM vB 652

vspltisb 04 vD SIMM 0 0 0 0 0 780

vspltish 04 vD SIMM 0 0 0 0 0 844

vspltisw 04 vD SIMM 0 0 0 0 0 908

vslo 04 vD vA vB 1036

vsro 04 vD vA vB 1100

vpkuhum 04 vD vA vB 14

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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vpkuwum 04 vD vA vB 78

vpkuhus 04 vD vA vB 142

vpkuwus 04 vD vA vB 206

vpkshus 04 vD vA vB 270

vpkswus 04 vD vA vB 334

vpkshss 04 vD vA vB 398

vpkswss 04 vD vA vB 462

vupkhsb 04 vD 0 0 0 0 0 vB 526

vupkhsh 04 vD 0 0 0 0 0 vB 590

vupklsb 04 vD 0 0 0 0 0 vB 654

vupklsh 04 vD 0 0 0 0 0 vB 718

vpkpx 04 vD vA vB 12 782

vupkhpx 04 vD 0 0 0 0 0 vB 846

vupklpx 04 vD 0 0 0 0 0 vB 974

vxor 04 vD vA vB 1220

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Table A-5. X-Form  

OPCD vD vA vB XO 0

OPCD vS vA vB XO 0

OPCD T 0 0 STRM A B XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dstst1 31 T 0 0 STRM rA rB 374 0

dststt1 31 1 0 0 0 tag rA rB 11 22 0

lvebx 31 vD rA rB 7 0

lvehx 31 vD rA rB 39 0

lvewx 31 vD rA rB 71 0

lvlx 31 vD rA rB 519 0

lvlxl 31 vD rA rB 775 0

lvrx 31 vD rA rB 551 0

lvrxl 31 vD rA rB 807 0

lvsl 31 vD rA rB 6 0

lvsr 31 vD rA rB 38 0

lvx 31 vD rA rB 103 0

lvxl 31 vD rA rB 359 0

stvebx 31 vS rA rB 135 0

stvehx 31 vS rA rB 167 0

stvewx 31 vS rA rB 199 0

stvlx 31 vS rA rB 647 0

stvlxl 31 vS rA rB 903 0

stvrx 31 vS rA rB 679 0

stvrxl 31 vS rA rB 935 0

stvx 31 vS rA rB 231 0

stvxl 31 vS rA rB 487 0

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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Table A-6. VXR-Form 

OPCD vD vA vB Rc XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

vcmpbfpx 04 vD vA vB Rc 966

vcmpeqfpx 04 vD vA vB Rc 198

vcmpequbx 04 vD vA vB Rc 6

vcmpequhx 04 vD vA vB Rc 70

vcmpequwx 04 vD vA vB Rc 134

vcmpgefpx 04 vD vA vB Rc 454

vcmpgtfpx 04 vD vA vB Rc 710

vcmpgtsbx 04 vD vA vB Rc 774

vcmpgtshx 04 vD vA vB Rc 838

vcmpgtswx 04 vD vA vB Rc 902

vcmpgtubx 04 vD vA vB Rc 518

vcmpgtuhx 04 vD vA vB Rc 582

vcmpgtuwx 04 vD vA vB Rc 646
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A.4 Instruction Set Legend

Table A-7 provides general information about the vector instruction set such as the architectural level, privi-
lege level, and form.

Table A-7. Vector Instruction Set Legend (Page 1 of 5) 

Name UISA VEA OEA Supervisor Level Optional Form

dststt1 X VX

dstt1 X VX

lvebx X X

lvehx X X

lvewx X X

lvlx X X

lvlxl X X

lvrx X X

lvrxl X X

lvsl X X

lvsr X X

lvx X X

lvxl X X

mfvscr X VX

mtvscr X VX

stvebx X X

stvehx X X

stvewx X X

stvlx X X

stvlxl X X

stvrx X X

stvrxl X X

stvx X X

stvxl X X

vaddcuw X VX

vaddfp X VX

vaddsbs X VX

vaddshs X VX

vaddsws X VX

vaddubm X VX

vaddubs X VX

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vadduhm X VX

vadduhs X VX

vadduwm X VX

vadduws X VX

vand X VX

vandc X VX

vavgsb X VX

vavgsh X VX

vavgsw X VX

vavgub X VX

vavguh X VX

vavguw X VX

vcfux X VX

vcfsx X VX

vcmpbfpx X VXR

vcmpeqfx X VXR

vcmpequbx X VXR

vcmpequhx X VXR

vcmpequwx X VXR

vcmpgefpx X VXR

vcmpgtfpx X VXR

vcmpgtsbx X VXR

vcmpgtshx X VXR

vcmpgtswx X VXR

vcmpgtubx X VXR

vcmpgtuhx X VXR

vcmpgtuwx X VXR

vctsxs X VX

vctuxs X VX

vexptefp X VX

vlogefp X VX

vmaddfp X VA

vmaxfp X VX

vmaxsb X VX

vmaxsh X VX

Table A-7. Vector Instruction Set Legend (Page 2 of 5) 

Name UISA VEA OEA Supervisor Level Optional Form

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vmaxsw X VX

vmaxub X VX

vmaxuh X VX

vmaxuw X VX

vmhaddshs X VA

vmhraddshs X VA

vminfp X VX

vminsb X VX

vminsh X VX

vminsw X VX

vminub X VX

vminuh X VX

vminuw X VX

vmladduhm X VA

vmrghb X VX

vmrghh X VX

vmrghw X VX

vmrglb X VX

vmrglh X VX

vmrglw X VX

vmsummbm X VA

vmsumshm X VA

vmsumshs X VA

vmsumubm X VA

vmsumuhm X VA

vmsumuhs X VA

vmulesb X VX

vmulesh X VX

vmuleub X VX

vmuleuh X VX

vmulosb X VX

vmulosh X VX

vmuloub X VX

vmulouh X VX

vnmsubfp X VA

Table A-7. Vector Instruction Set Legend (Page 3 of 5) 

Name UISA VEA OEA Supervisor Level Optional Form

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vnor X VX

vor X VX

vperm X VA

vpkpx X VX

vpkshss X VX

vpkshus X VX

vpkswss X VX

vpkuhum X VX

vpkuhus X VX

vpkswus X VX

vpkuwum X VX

vpkuwus X VX

vrefp X VX

vrfim X VX

vrfin X VX

vrfip X VX

vrfiz X VX

vrlb X VX

vrlh X VX

vrlw X VX

vrsqrtefp X VX

vsel X VA

vsl X VX

vslb X VX

vsldoi X VA

vslh X VX

vslo X VX

vslw X VX

vspltb X VX

vsplth X VX

vspltisb X VX

vspltish X VX

vspltisw X VX

vspltw X VX

vsr X VX

Table A-7. Vector Instruction Set Legend (Page 4 of 5) 

Name UISA VEA OEA Supervisor Level Optional Form

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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vsrab X VX

vsrah X VX

vsraw X VX

vsrb X VX

vsrh X VX

vsro X VX

vsrw X VX

vsubcuw X VX

vsubfp X VX

vsubsbs X VX

vsubshs X VX

vsubsws X VX

vsububm X VX

vsubuhm X VX

vsububs X VX

vsubuhs X VX

vsubuwm X VX

vsubuws X VX

vsumsws X VX

vsum2sws X VX

vsum4sbs X VX

vsum4shs X VX

vsum4ubs X VX

vupkhpx X VX

vupkhsb X VX

vupklsh X VX

vupkhpx X VX

vupklsb X VX

vupklsh X VX

vxor X VX

Table A-7. Vector Instruction Set Legend (Page 5 of 5) 

Name UISA VEA OEA Supervisor Level Optional Form

Note:  

1. The Cell Broadband Engine processor treats this instruction as a no-op. 
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Glossary

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book. Some of the 
terms and definitions included in the glossary are reprinted from IEEE Std. 754-1985, IEEE Standard for 
Binary Floating-Point Arithmetic, copyright ©1985 by the Institute of Electrical and Electronics Engineers, Inc. 
with the permission of the IEEE.

Note:  Some terms are defined in the context of how they are used in this book.

A

architecture A detailed specification of requirements for a processor or computer system. It 
does not specify details of how the processor or computer system must be imple-
mented; instead it provides a template for a family of compatible implementa-
tions.

asynchronous 
exception

Exceptions that are caused by events external to the processor’s execution. In 
this document, the term ‘asynchronous exception’ is used interchangeably with 
the word interrupt.

atomic access A bus access that attempts to be part of a read-write operation to the same 
address uninterrupted by any other access to that address (the term refers to the 
fact that the transactions are indivisible). The PowerPC Architecture implements 
atomic accesses through the lwarx/stwcx. (ldarx/stdcx. in 64-bit implementa-
tions) instruction pair.

B

biased exponent An exponent whose range of values is shifted by a constant (bias). Typically a 
bias is provided to allow a range of positive values to express a range that 
includes both positive and negative values.

big endian A byte-ordering method in memory where the address n of a word corresponds to 
the most-significant byte. In an addressed memory word, the bytes are ordered 
(left to right) 0, 1, 2, 3, with 0 being the most-significant byte.

boundedly undefined A characteristic of results of certain operations that are not rigidly prescribed by 
the PowerPC Architecture. Boundedly- undefined results for a given operation 
may vary among implementations, and between execution attempts in the same 
implementation. 

Although the architecture does not prescribe the exact behavior for when results 
are allowed to be boundedly undefined, the results of executing instructions in 
contexts where results are allowed to be boundedly undefined are constrained to 
ones that could have been achieved by executing an arbitrary sequence of 
defined instructions, in valid form, starting in the state the machine was in before 
attempting to execute the given instruction.
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C

cache High-speed memory component containing recently-accessed data or instruc-
tions (subset of main memory).

cache block A small region of contiguous memory that is copied from memory into a cache. 
The size of a cache block may vary among processors; the maximum block size 
is one page. In PowerPC processors, cache coherency is maintained on a cache-
block basis. Note that the term ‘cache block’ is often used interchangeably with 
‘cache line’.

changed bit One of two page history bits found in each page table entry (PTE). The processor 
sets the changed bit if any store is performed into the page. See also Page 
access history bits and Referenced bit. 

cache coherency An attribute wherein an accurate and common view of memory is provided to all 
devices that share the same memory system. Caches are coherent if a processor 
performing a read from its cache is supplied with data corresponding to the most 
recent value written to memory or to another processor’s cache.

cache flush  An operation that removes from a cache any data from a specified address 
range. This operation ensures that any modified data within the specified address 
range is written back to main memory. This operation is generated typically by a 
Data Cache Block Flush (dcbf) instruction. 

caching-inhibited A memory update policy in which the cache is bypassed and the load or store is 
performed to or from main memory. 

cast-outs Cache blocks that must be written to memory when a cache miss causes a cache 
block to be replaced.

clear To cause a bit or bit field to register a value of zero. See also Set.

context synchronization An operation that ensures that all instructions in execution complete past the 
point where they can produce an exception, that all instructions in execution 
complete in the context in which they began execution, and that all subsequent 
instructions are fetched and executed in the new context. Context synchroniza-
tion may result from executing specific instructions (such as isync or rfi) or when 
certain events occur (such as an exception). 

copy-back An operation in which modified data in a cache block is copied back to memory. 

D

denormalized number A nonzero floating-point number whose exponent has a reserved value, typically 
the format's minimum, and whose explicit or implicit leading significand bit is 
zero.

direct-mapped cache A cache in which each main memory address can appear in only one location 
within the cache, operates more quickly when the memory request is a cache hit.
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E

effective address (EA) The 32 or 64-bit address specified for a load, store, or an instruction fetch. This 
address is then submitted to the MMU for translation to either a physical memory 
address or an I/O address.

exception A condition encountered by the processor that requires special, supervisor-level 
processing.

exception handler A software routine that executes when an exception is taken. Normally, the 
exception handler corrects the condition that caused the exception, or performs 
some other meaningful task (that may include canceling the program that caused 
the exception). The address for each exception handler is identified by an excep-
tion vector offset defined by the architecture and a prefix selected via the MSR. 

extended opcode A secondary opcode field generally located in instruction bits 21–30, that further 
defines the instruction type. All PowerPC instructions are one word in length. The 
most significant 6 bits of the instruction are the primary opcode, identifying the 
type of instruction. See also primary opcode.

execution 
synchronization

A mechanism by which all instructions in execution are architecturally complete 
before beginning execution (appearing to begin execution) of the next instruction. 
Similar to context synchronization but doesn't force the contents of the instruction 
buffers to be deleted and refetched.

exponent In the binary representation of a floating-point number, the exponent is the 
component that normally signifies the integer power to which the value two is 
raised in determining the value of the represented number. See also Biased 
exponent.

F

feed-forwarding A feature that reduces the number of clock cycles that an execution unit must 
wait to use a register. When the source register of the current instruction is the 
same as the destination register of the previous instruction, the result of the 
previous instruction is routed to the current instruction at the same time that it is 
written to the register file. With feed-forwarding, the destination bus is gated to 
the waiting execution unit over the appropriate source bus, saving the cycles 
which would be used for the write and read.

fetch Retrieving instructions from either the cache or main memory and placing them 
into the instruction queue.

floating-point register 
(FPR)

Any of the 32 registers in the floating-point register file. These registers provide 
the source operands and destination results for floating-point instructions. Load 
instructions move data from memory to FPRs and store instructions move data 
from FPRs to memory. The FPRs are 64 bits wide and store floating-point values 
in double-precision format.

fraction In the binary representation of a floating-point number, the field of the significand 
that lies to the right of its implied binary point.
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fully-associative Addressing scheme where every cache location (every byte) can have any 
possible address.

G

general-purpose 
register (GPR)

Any of the 32 registers in the general-purpose register file. These registers 
provide the source operands and destination results for all integer data manipula-
tion instructions. Integer load instructions move data from memory to GPRs and 
store instructions move data from GPRs to memory.

guarded The guarded attribute pertains to out-of-order execution. When a page is desig-
nated as guarded, instructions and data cannot be accessed out-of-order.

H

Harvard architecture An architectural model featuring separate caches for instruction and data.

hashing An algorithm used in the page table search process.

I

IEEE 754 A standard written by the Institute of Electrical and Electronics Engineers that 
defines operations and representations of binary floating-point arithmetic.

illegal instructions A class of instructions that are not implemented for a particular PowerPC 
processor. These include instructions not defined by the PowerPC Architecture. 
In addition, for 32-bit implementations, instructions that are defined only for 64-bit 
implementations are considered to be illegal instructions. For 64-bit implementa-
tions instructions that are defined only for 32-bit implementations are considered 
to be illegal instructions.

implementation A particular processor that conforms to the PowerPC Architecture, but may differ 
from other architecture-compliant implementations for example in design, feature 
set, and implementation of optional features. The PowerPC Architecture has 
many different implementations.

implementation-
dependent

An aspect of a feature in a processor’s design that is defined by a processor’s 
design specifications rather than by the PowerPC Architecture. 

implementation-specific An aspect of a feature in a processor’s design that is not required by the 
PowerPC Architecture, but for which the PowerPC Architecture may provide 
concessions to ensure that processors that implement the feature do so consis-
tently. 

imprecise exception A type of synchronous exception that is allowed not to adhere to the precise 
exception model (see Precise exception). The PowerPC Architecture allows only 
floating-point exceptions to be handled imprecisely.

inexact Loss of accuracy in an arithmetic operation when the rounded result differs from 
the infinitely precise value with unbounded range.
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in-order An aspect of an operation that adheres to a sequential model. An operation is 
said to be performed in-order if, at the time that it is performed, it is known to be 
required by the sequential execution model. See Out-of-order.

instruction latency The total number of clock cycles necessary to execute an instruction and make 
ready the results of that instruction.

instruction parallelism A feature of PowerPC processors that allows instructions to be processed in 
parallel. 

interrupt The act of changing the machine state in response to an exception.

invalid state State of a cache entry that does not currently contain a valid copy of a cache 
block from memory.

K

key bits A set of key bits referred to as Ks and Kp in each segment register. The key bits 
determine whether supervisor or user programs can access a page within that 
segment.

kill An operation that causes a cache block to be invalidated.

L

L2 cache See Secondary cache.

least-significant bit (lsb) The bit of least value in an address, register, data element, or instruction 
encoding.

least-significant byte 
(LSB)

The byte of least value in an address, register, data element, or instruction 
encoding.

loop unrolling Loop unrolling provides a way of increasing performance by allowing more 
instructions to be issued in a clock cycle. The compiler replicates the loop body to 
increase the number of instructions executed between a loop branch.

M

MESI 
(modified/exclusive/
shared/invalid)

Cache coherency protocol used to manage caches on different devices that 
share a memory system. Note that the PowerPC Architecture does not specify 
the implementation of a MESI protocol to ensure cache coherency. 

memory access 
ordering

The specific order in which the processor performs load and store memory 
accesses and the order in which those accesses complete.

memory-mapped 
accesses

Accesses whose addresses use the page or block address translation mecha-
nisms provided by the MMU and that occur externally with the bus protocol 
defined for memory.

memory coherency An aspect of caching in which it is ensured that an accurate view of memory is 
provided to all devices that share system memory.
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memory consistency Refers to agreement of levels of memory with respect to a single processor and 
system memory (for example, on-chip cache, secondary cache, and system 
memory).

memory management 
unit (MMU)

The functional unit that is capable of translating an effective (logical) address to a 
physical address, providing protection mechanisms, and defining caching 
methods.

microarchitecture The hardware details of a microprocessor’s design. Such details are not defined 
by the PowerPC Architecture. 

mnemonic The abbreviated name of an instruction used for coding.

modified state When a cache block is in the modified state, it has been modified by the 
processor since it was copied from memory. See MESI.

most-significant bit 
(msb)

The highest-order bit in an address, registers, data element, or instruction 
encoding. 

most-significant byte 
(MSB)

The highest-order byte in an address, registers, data element, or instruction 
encoding.

multiprocessing The capability of software, especially operating systems, to support execution on 
more than one processor at the same time.

N

NaN An abbreviation for ‘Not a Number’; a symbolic entity encoded in floating-point 
format. There are two types of NaNs—signaling NaNs (SNaNs) and quiet NaNs 
(QNaNs).

no-op No-operation. A single-cycle operation that does not affect registers or generate 
bus activity. 

normalization A process by which a floating-point value is manipulated such that it can be 
represented in the format for the appropriate precision (single- or double-preci-
sion). For a floating-point value to be representable in the single- or double-preci-
sion format, the leading implied bit must be a 1.

O

OEA (operating 
environment 
architecture)

The level of the architecture that describes PowerPC memory management 
model, supervisor-level registers, synchronization requirements, and the excep-
tion model. It also defines the time-base feature from a supervisor-level perspec-
tive. Implementations that conform to the PowerPC OEA also conform to the 
PowerPC UISA and VEA.

optional A feature, such as an instruction, a register, or an exception, that is defined by 
the PowerPC Architecture but not required to be implemented.
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out-of-order An aspect of an operation that allows it to be performed ahead of one that may 
have preceded it in the sequential model, for example, speculative operations. 
An operation is said to be performed out-of-order if, at the time that it is 
performed, it is not known to be required by the sequential execution model. See 
in-order.

out-of-order execution A technique that allows instructions to be issued and completed in an order that 
differs from their sequence in the instruction stream.

overflow An error condition that occurs during arithmetic operations when the result 
cannot be stored accurately in the destination register(s). For example, if two 32-
bit numbers are multiplied, the result may not be representable in 32 bits.

P

page A region in memory. The OEA defines a page as a 4 KB area of memory, aligned 
on a 4 KB boundary or a large page size which is implementation dependent.

page access history bits The changed and referenced bits in the PTE keep track of the access history 
within the page. The referenced bit is set by the MMU whenever the page is 
accessed for a read or write operation. The changed bit is set when the page is 
stored into. See Changed bit and Referenced bit. 

page fault A page fault is a condition that occurs when the processor attempts to access a 
memory location that resides within a page not currently resident in physical 
memory. On PowerPC processors, a page fault exception condition occurs when 
a matching, valid page table entry (PTE[V] = 1) cannot be located.

page table A table in memory that consists of page table entries, or PTEs. It is further orga-
nized into eight PTEs per PTEG (page table entry group). The number of PTEGs 
in the page table depends on the size of the page table (as specified in the SDR1 
register).

page table entry (PTE) A 16-byte data structure containing information used to translate a virtual page 
address to a physical page address. A page is either 4 KB or an implementation-
specific sized large page.

persistent data stream A data stream is considered to be persistent when it is expected to be loaded 
from frequently.

physical memory The actual memory that can be accessed through the system’s memory bus.

pipelining A technique that breaks operations, such as instruction processing or bus trans-
actions, into smaller distinct stages or tenures (respectively) so that a subse-
quent operation can begin before the previous one has completed. 

precise exceptions A category of exception for which the pipeline can be stopped so that instructions 
that preceded the faulting instruction can complete, and subsequent instructions 
can be flushed and redispatched after exception handling has completed. See 
Imprecise exceptions.

primary opcode The most-significant 6 bits (bits 0–5) of the instruction encoding that identifies the 
type of instruction. See Secondary opcode.
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protection boundary A boundary between protection domains.

protection domain A protection domain is a segment, a virtual page, or a range of unmapped effec-
tive addresses. It is defined only when the appropriate relocate bit in the MSR (IR 
or DR) is ‘1’. 

Q

quadword A group of 16 contiguous locations starting at an address divisible by 16.

quiet NaN A type of NaN that can propagate through most arithmetic operations without 
signaling exceptions. A quiet NaN is used to represent the results of certain 
invalid operations, such as invalid arithmetic operations on infinities or on NaNs, 
when invalid. See Signaling NaN.

R

rA The rA instruction field is used to specify a GPR to be used as a source or desti-
nation.

rB The rB instruction field is used to specify a GPR to be used as a source.

rD The rD instruction field is used to specify a GPR to be used as a destination.

real address mode An MMU mode when no address translation is performed and the effective 
address specified is the same as the physical address. The processor’s MMU is 
operating in real address mode if its ability to perform address translation has 
been disabled through the MSR registers IR or DR bits. 

record bit Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the condi-
tion register (CR) to reflect the result of the operation.

referenced bit One of two page history bits found in each page table entry (PTE). The processor 
sets the referenced bit whenever the page is accessed for a read or write. See 
also Page access history bits.

register indirect 
addressing

A form of addressing that specifies one GPR that contains the address for the 
load or store.

register indirect with 
immediate index 
addressing

A form of addressing that specifies an immediate value to be added to the 
contents of a specified GPR to form the target address for the load or store.

register indirect with 
index addressing

A form of addressing that specifies that the contents of two GPRs be added 
together to yield the target address for the load or store.

reservation The processor establishes a reservation on a cache block of memory space 
when it executes an lwarx or ldarx instruction to read a memory semaphore into 
a GPR.
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reserved field In a register, a reserved field is one that is not assigned a function. A reserved 
field may be a single bit. The handling of reserved bits is implementation-depen-
dent. Software is permitted to write any value to such a bit. A subsequent reading 
of the bit returns 0 if the value last written to the bit was 0 and returns an unde-
fined value (0 or 1) otherwise.

RISC (reduced 
instruction set 
computing)

An architecture characterized by fixed-length instructions with nonoverlapping 
functionality and by a separate set of load and store instructions that perform 
memory accesses. 

S

scalability The capability of an architecture to generate implementations specific for a wide 
range of purposes, and in particular implementations of significantly greater 
performance or functionality or both than at present, while maintaining compati-
bility with current implementations.

secondary cache A cache memory that is typically larger and has a longer access time than the 
primary cache. A secondary cache may be shared by multiple devices. Also 
referred to as L2, or level-2, cache.

segment A 256-Mbyte area of virtual memory that is the most basic memory space defined 
by the PowerPC Architecture. Each segment is configured through a unique 
segment descriptor. 

segment descriptors Information used to generate the interim virtual address. The segment descrip-
tors reside in 16 on-chip segment registers for 32-bit implementations. For 64-bit 
implementations, the segment descriptors reside as segment table entries in a 
hashed segment table in memory.

segment table A 4 KB (1-page) data structure that defines the mapping between effective 
segments and virtual segments for a process. Segment tables are implemented 
on 64-bit processors only. 

segment table entry 
(STE)

Data structures containing information used to translate effective address to 
physical address. STEs are implemented on 64-bit processors only. 

set (v) To write a nonzero value to a bit or bit field; the opposite of clear. The term ‘set’ 
may also be used to generally describe the updating of a bit or bit field. 

set (n) A subdivision of a cache. Cacheable data can be stored in a given location in any 
one of the sets, typically corresponding to its lower-order address bits. Because 
several memory locations can map to the same location, cached data is typically 
placed in the set whose cache block corresponding to that address was used 
least recently. See Set-associative. 

set-associative Aspect of cache organization in which the cache space is divided into sections, 
called sets. The cache controller associates a particular main memory address 
with the contents of a particular set, or region, within the cache.

signaling NaN A type of NaN that generates an invalid operation program exception when it is 
specified as arithmetic operands. See Quiet NaN. 
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significand The component of a binary floating-point number that consists of an explicit or 
implicit leading bit to the left of its implied binary point and a fraction field to the 
right.

SIMD Single instruction stream, multiple data streams. A vector instruction can operate 
on several data elements within a single instruction in a single functional unit. 
SIMD is a way to work with all the data at once (in parallel), which can make 
execution faster. 

simplified mnemonics Assembler mnemonics that represent a more complex form of a common opera-
tion.

SLB (segment 
lookaside buffer)

An optional cache that holds recently-used segment table entries.

splat A splat instruction takes one element and replicates (splats) that value into a 
vector register. The purpose of the splat instruction is to ensure that all elements 
have the same value so that they can be used as a constant to multiply other 
vector registers.

static branch prediction Mechanism by which software (for example, compilers) can give a hint to the 
hardware about the direction a branch is likely to take. 

sticky bit A bit that when set must be cleared explicitly.

strong ordering A memory access model that requires exclusive access to an address before 
making an update, to prevent another device from using stale data.

superscalar machine A machine that can issue multiple instructions concurrently from a conventional 
linear instruction stream.

supervisor mode The privileged operation state of a processor. In supervisor mode, software, typi-
cally the operating system, can access all control registers and can access the 
supervisor memory space, among other privileged operations.

synchronization A process to ensure that operations occur strictly in order. See Context synchro-
nization and Execution synchronization. 

synchronous exception An exception that is generated by the execution of a particular instruction or 
instruction sequence. There are two types of synchronous exceptions, precise 
and imprecise.

system memory The physical memory available to a processor. 

T

TLB (translation 
lookaside buffer)

A cache that holds recently-used page table entries.

throughput The measure of the number of instructions that are processed per clock cycle.

tiny A floating-point value that is too small to be represented for a particular precision 
format, including denormalized numbers; they do not include ±0.
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transient stream A data stream is considered to be transient when it is likely to be referenced from 
infrequently.

U

UISA (user instruction 
set architecture)

The level of the architecture to which user-level software should conform. The 
UISA defines the base user-level instruction set, user-level registers, data types, 
floating-point memory conventions and exception model as seen by user 
programs, and the memory and programming models.

underflow An error condition that occurs during arithmetic operations when the result 
cannot be represented accurately in the destination register. For example, under-
flow can happen if two floating-point fractions are multiplied and the result 
requires a smaller exponent or mantissa than the single-precision format can 
provide. In other words, the result is too small to be represented accurately.

unified cache Combined data and instruction cache.

user mode The unprivileged operating state of a processor used typically by application soft-
ware. In user mode, software can only access certain control registers and can 
access only user memory space. No privileged operations can be performed. 
Also referred to as problem state.

V

vA The vA instruction field is used to specify a vector register to be used as a source 
or destination.

vB The vB instruction field is used to specify a vector register to be used as a 
source.

vC The vC instruction field is used to specify a vector register to be used as a 
source.

vD The vD instruction field is used to specify a vector register to be used as a desti-
nation.

vS The vS instruction field is used to specify a vector register to be used as a 
source.

VEA (virtual 
environment 
architecture)

The level of the architecture that describes the memory model for an environment 
in which multiple devices can access memory, defines aspects of the cache 
model, defines cache control instructions, and defines the time-base facility from 
a user-level perspective. Implementations that conform to the PowerPC VEA also 
adhere to the UISA, but may not necessarily adhere to the OEA.

vector The spatial parallel processing of short, fixed-length one-dimensional matrices 
performed by an execution unit.

Vector Register (VR) Any of the 32 registers in the vector register file. Each vector register is 128 bits 
wide. These registers can provide the source operands and destination results 
for vector instructions.
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virtual address An intermediate address used in the translation of an effective address to a phys-
ical address.

virtual memory The address space created using the memory management facilities of the 
processor. Program access to virtual memory is possible only when it coincides 
with physical memory.

W

weak ordering A memory access model that allows bus operations to be reordered dynamically, 
which improves overall performance and in particular reduces the effect of 
memory latency on instruction throughput.

word A 32-bit data element.

write-back A cache memory update policy in which processor write cycles are directly 
written only to the cache. External memory is updated only indirectly, for 
example, when a modified cache block is cast out to make room for newer data. 

write-through A cache memory update policy in which all processor write cycles are written to 
both the cache and memory.
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Version 2.07
October 26, 2006

Version 2.07
• Changed “vector multimedia register (VMR)” to “vector register (VR)” and changed “vector multimedia 

register file (VMRF)” to “vector register file (VRF)” throughout.
• Changed “command” to “instruction” throughout.
• Deleted redundant notes indicating that the Cell Broadband Engine processor does not support little-

endian mode. 
• Changed the notes indicating that the data stream instructions are not supported on the Cell Broadband 

Engine processor to indicate that they are treated as no-ops.
• Removed all discussion of little-endian mode. (No current implementations of the vector/SIMD multimedia 

extension technology support little-endian mode.) 
– Deleted Section 3.1.2.1 Big-Endian Byte Ordering, Section 3.1.2.2 Little-Endian Byte Ordering, Sec-

tion 3.1.3 Quadword Byte Ordering Example, Section 3.1.4 Aligned Scalars in Little-Endian Mode., 
and Section 3.1.7 Mixed-Endian Systems. 

– Replaced Section 3.1.6 Quadword Data Alignment with revised information (see Section 3.1.4 
Quadword Data Alignment on page 44). 

– Changed the RTL, or the description, or both of the following instructions: lvebx, lvehx, lvewx, 
stvebx, stvehx, stvewx, stvx, lvebx, lvehx, lvewx, lvlx, lvlxl, lvrx, lvrxl, lvx, lvxl, stvebx, 
stvehx, stvewx, stvlx, stvlxl, stvrx, stvrxl, stvx, stvxl.

• Changed the definition of DSLAM from “digital subscriber loop access multiplexer” to “digital subscriber 
line access multiplexer” (see Section 1 Overview on page 23). 

• Removed a statement indicating that vector load and store instructions that attempt to access a direct-
store segment will cause a DSI exception (see Section 1.2.6 Vector Exception Model on page 32).

• Corrected the description of the VRSAVE Register and the VRn field (see Section 2.2.3 VRSAVE Regis-
ter (VRSAVE) on page 38). 

• Clarified what happens to SRR1 when a VPU unavailable exception occurs (see Section 2.4.2.2 Machine 
Status Save/Restore Register 1 (SRR1) on page 42).

• Simplified the discussion of alignment (see Section 3.1.1 Aligned and Misaligned Accesses on page 43).
• Revised the description of vector load and store instructions (see Section 4.2.3 Vector Load and Store 

Instructions on page 75).
• Added a note to Table 4-15 Vector Load Instructions on page 78.
• Added a note to Table 4-16 Vector Load Instructions Supporting Alignment on page 80.
• Added the Vector Shift Left instruction to Table 4-24 Vector Shift Instructions on page 87.
• Removed a note indicating that data stream instructions are not supported on the Cell Broadband Engine 

(see Section 5.1 PowerPC Shared Memory on page 95).
• Moved a note indicating that the Cell Broadband Engine implements an extended definition of dcbt and 

corrected a reference (see Section 5.1 PowerPC Shared Memory on page 95 and Section 5.2.1 Soft-
ware-Directed Prefetch on page 96).

• Removed references to 32-bit mode (see Section 5.2.1.1 Data Stream Touch (dst) on page 96).
• Reworded the description of transient streams (see Section 5.2.1.2 Transient Streams (dstt) on page 98).
• Clarified the reasons why dst instructions should be issued periodically (see Section 5.2.1.8 Stream 

Usage Notes on page 101).
• Expanded the list of instructions treated as no-ops by certain processors and clarified the description of 

the functionality of these instructions (see Section 5.2.1.9 Stream Implementation Assumptions on 
page 103).

• Provided a reference to PowerPC Operating Environment Architecture, Book III (see Section 5.2.3 Par-
tially Executed Vector Instructions on page 103). 

• Revised the description of the DSI exception (see Section 5.3 DSI Exception—Data Address Breakpoint 
on page 104). 

• Revised the description of the UIMM field (see Table 6-1 Instruction Syntax Conventions on page 107).
• Corrected the meaning of SImaximum(X,Y) and SIminimum(X,Y) (see Table 6-2 Notation and Conven-

tions on page 108).
• Indicated that Block Stride is a signed integer (see Data Stream Touch (0x7C00 02AC) on page 115 and 

Data Stream Touch for Store (0x7C00 02EC) on page 117). 
• Corrected operands in the vcmpbfpx instruction (see Vector Compare Bounds Floating Point (0x1000 

03C6) on page 164).
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Version 2.07
October 26, 2006

(continued)

• Indicated that vB should be negated before comparison (see Figure 6-29 vcmpbfp—Compare Bounds of 
Four Floating-Point Elements on page 165). 

• Deleted notes that were not applicable to the data type (see Vector Compare Greater-Than Signed Byte 
(0x1000 0306) on page 172, Vector Compare Greater-Than Signed Halfword (0x1000 0346) on 
page 173, Vector Compare Greater-Than Signed Word (0x1000 0386) on page 174, Vector Compare 
Greater-Than Unsigned Byte (0x1000 0206) on page 175, Vector Compare Greater-Than Unsigned 
Halfword (0x1000 0246) on page 176), and Vector Compare Greater-Than Unsigned Word (0x1000 
0286) on page 177). 

• Corrected the description of the vlogefp instruction (see Vector Log2 Estimate Floating Point (0x1000 
01CA) on page 182

• Corrected the number of elements in registers vA and vB and the length of vD in the introduction to sev-
eral figures (see Figure 6-57 vminsb—Minimum of Sixteen Signed Integer Elements on page 195, Figure 
6-58 vminsh—Minimum of Eight Signed Integer Elements on page 196, Figure 6-60 vminub—Minimum of 
Sixteen Unsigned Integer Elements on page 198, Figure 6-69 vmrglw—Merge Two Low-Order Elements 
on page 207).

• Deleted a sentence indicating “if the intermediate result is less than ‘0’, it saturates to ‘0’” (see Vector Mul-
tiply Sum Unsigned Halfword Saturate (0x1000 0027) on page 213).

• Added notes indicating that the result of the floating-point operation is independent of VSCR[NJ] (see 
Vector Round to Floating-Point Integer toward Minus Infinity (0x1000 02CA) on page 237 and Vector 
Round to Floating-Point Integer toward Plus Infinity (0x1000 028A) on page 239). 

• Corrected the size of the UIMM field in the following instructions: vspltb, vsplth, vspltw (see Vector Splat 
Byte (0x1000 020C) on page 252, Vector Splat Halfword (0x1000 024C) on page 253, and Vector Splat 
Word (0x1000 028C) on page 257). 

• Changed “bit[n-1]” to “bit[7]” in the description of the vsrab instruction (see Vector Shift Right Algebraic 
Byte (0x1000 0304) on page 260). 

• Changed the unary minus operator to a logical NOT in the pseudocode for the following instructions: 
vsubcuw, vsubsbs, vsubshs, vsubsws, vsububm, vsububs, vsubuhm, vsubuhs, vsubuwm, vsub-
uws (see Vector Subtract Carryout Unsigned Word (0x1000 0580) on page 267, Vector Subtract Signed 
Byte Saturate (0x1000 0700) on page 269, Vector Subtract Signed Halfword Saturate (0x1000 0740) on 
page 270, Vector Subtract Signed Word Saturate (0x1000 0780) on page 271, Vector Subtract Unsigned 
Byte Modulo (0x1000 0400) on page 272, Vector Subtract Unsigned Byte Saturate (0x1000 0600) on 
page 273, Vector Subtract Signed Halfword Modulo (0x1000 0440) on page 274, Vector Subtract Signed 
Halfword Saturate (0x1000 0640) on page 275), Vector Subtract Unsigned Word Modulo (0x1000 0480) 
on page 276, Vector Subtract Unsigned Word Saturate (0x1000 0680) on page 277).

• Corrected two entries in the Glossary (see Glossary on page 315).
• Made other editorial changes for consistency and clarity. 

Version 2.06
September 30, 2005

Version 2.06
• Added Cell Broadband Engine processor instructions: lvlx, lvlxl, lvrx, lvrxl, stvlx, stvlxl, stvrx, stvrxl.
• Added note that instructions: dss, dssall, dst, dstt, dstst, dststt are not supported on the Cell Broad-

band Engine processor.
• Changed quad word to quadword, half word to halfword, double word to doubleword, and so forth.
• Removed 32-bit implementation information.
• Various editing corrections.
• Updated trademarks. 
• Corrected the pseudocode for the following instructions: vmsumshm, vmsumshs, vmsumuhm, 

vmsumuhs, vsl, vsr. 
• Changed the description of lvxl and stvxl. 
• Changed “vector register (VR)” to “vector multimedia register (VMR)”; changed “VXU register file (VRF)” 

to “vector multimedia register file (VMRF).”
• In Table 4-27 User-Level Cache Instructions on page 92, revised the descriptions of the transient and 

nontransient Data Stream Touch and Data Stream Touch for Store instructions. 
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Updated format and cross references to match IBM template.
Chapter 2 corrections as follows: 

• Updated description of VRSAVE register (Section 2.2.3 VRSAVE Register (VRSAVE)).
• Fixed Figure 2-1 Programming Model—All Registers. 

Chapter 4 corrections as follows: 
• Fixed Table 4-9 Vector Floating-Point Rounding and Conversion Instructions as follows:
• Mnemonic for Vector Round to Floating-Point Integer Nearest is vrfin (not fvrfin)
• Mnemonic for Vector Round to Floating-Point Integer toward Zero is vrfiz (not fvrfiz)
• Mnemonic for Vector Round to Floating-Point Integer toward Positive Infinity is vrfip (not fvrfip)
• Mnemonic for Vector Round to Floating-Point Integer toward Minus Infinity is vrfim (not fvrfim)

Chapter 6 corrections/enhancements as follows:
• Add hex codes for instructions (in chapter 6).
• Fixed mfvscr bit description table (bit 31 should not be zero).
• Fixed mtvscr bit description table (bit 31 should not be zero). 
• Changed vexptefp bit description from 458 to 394.

Updated the Appendix as follows:
• Appendix A-1, Table A-1, changed mfvscr bit 31 (should not be zero). 
• Appendix A-1, Table A-1, changed mtvscr bit 31 (should not be zero) and vD should be vB.
• Appendix A-1, Table A-1, corrected vcfux bit 31 (merged with bits 21 to 31).
• Appendix A-2, Table A-2, changed mfvscr encoding for bits 21 to 31 to: 110 0000 0100.
• Appendix A-2, Table A-2, changed mtscr encoding for bits 21 to 31 to: 110 0100 0100. 
• Appendix A-3, Table A-4, changed mfvscr bit 31 (should not be zero). 
• Appendix A-3, Table A-4, changed mtvscr bit 31 (should not be zero). 

Revision Date Contents of Modification
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